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Abstract: Mapping of tree height is of great importance for management, planning, and research 
related to agroforestry parklands in Africa. In this paper, we investigate the potential of spotlight-
mode data from the interferometric synthetic aperture radar (InSAR) satellite system TanDEM-X 
(TDM) for mapping of tree height in Saponé, Burkina Faso, a test site characterised by a low average 
canopy cover (~15%) and a mean tree height of 9.0 m. Seven TDM acquisitions from January–April 
2018 are used jointly to create high-resolution (~3 m) maps of interferometric phase height and mean 
canopy elevation, the latter derived using a new, model-based processing approach compensating 
for some effects of the side-looking geometry of SAR. Compared with phase height, mean canopy 
elevation provides a more accurate representation of tree height variations, a better tree positioning 
accuracy, and better tree height estimation performance when assessed using 915 trees inventoried 
in situ and representing 15 different species/genera. We observe and discuss two bias effects, and 
we use empirical models to compensate for these effects. The best-performing model using only 
TDM data provides tree height estimates with a standard error (SE) of 2.8 m (31% of the average 
height) and a correlation coefficient of 75%. The estimation performance is further improved when 
TDM height data are combined with in situ measurements; this is a promising result in view of 
future synergies with other remote sensing techniques or ground measurement-supported moni-
toring of well-known trees. 

Keywords: interferometric synthetic aperture radar (InSAR); two-level model (TLM); geometric 
corrections; spotlight data; vegetation height 
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1. Introduction 
Parklands are an important agroforestry system widespread across the Sudano-Sa-

helian zone of West Africa [1,2]. In these landscapes, agriculture and livestock production 
systems are integrated under a sparse cover of scattered trees. Parklands have been 
shaped by generations of small-scale farmers aware of the multiple beneficial roles of the 
trees [2,3]. This is reflected in the species composition of the parklands, where the most 
abundant trees (e.g., Vitellaria paradoxa C. F. Gaertn., Parkia biglobosa (Jacq.) R. Br. ex G. 
Don, and Faidherbia albida (Delile) A. Chev.) are valued as sources of nutrition, medicine, 
fodder, firewood, as well as artisanal and construction material. Aside from being a sub-
sistence resource, parkland trees are essential for ecosystem services, e.g., soil erosion pre-
vention, nitrogen fixation, water purification, and groundwater recharge [4,5]. Moreover, 
they provide shade and shelter to humans and livestock. Although many local stakehold-
ers, including farmers and agroforestry academics, recognize the importance of the park-
land trees, there is a lack of landscape-scale monitoring tools that can be used for quanti-
tative research, as well as sound and informed management [6,7]. With the increased pres-
sure from the growing population and changing climatic conditions, and without clear 
conservational guidelines, these vital agroecological systems are facing an uncertain fu-
ture [8–10]. 

Remote sensing methods are needed to study the landscape-scale influence of park-
land trees on land productivity, hydrology, ecosystem services, and other important pro-
cesses [11,12]. Optical remote sensing methods have shown promise in mapping of can-
opy cover in the parkland areas during the limited time windows when cloud cover is 
favourable [9,13–16]. These windows usually coincide with the dry season when many 
trees lose their leaves, so the detection of tree crowns is more difficult. Airborne laser 
scanning sensors have proven useful for providing high-quality information on topogra-
phy, tree height, and vertical vegetation structure [17], but these systems are costly and 
inefficient for landscape-scale monitoring. Passive and active microwave methods have 
been used to measure soil moisture patterns and above ground biomass across landscapes 
[18,19]. 

One important property, which past satellite remote sensing methods have not man-
aged to measure accurately, is the height of individual trees. Height can be used for mon-
itoring growth and site productivity, as well as for estimating tree age, biomass, stem vol-
ume, and carbon content using allometric equations [20,21]. While other tree properties, 
mainly stem and crown diameter, can also be utilized for these applications, tree height is 
potentially easier to map and monitor with the cloud-penetrating and weather-independ-
ent interferometric radar satellites. 

Across-track interferometric synthetic aperture radar (referred to as InSAR in the fol-
lowing text) uses radar data acquired from two slightly different positions in space to 
measure elevation at high vertical and spatial resolutions [22]. It has in the past given 
unprecedented information about the Earth, in particular the first near-global digital ele-
vation model (DEM) acquired in February 2000 with the Shuttle Radar Topography Mis-
sion (SRTM) [23]. Since 2010, the twin-satellite TanDEM-X (TDM) system has been provid-
ing high-resolution InSAR data, which have been used to create a more accurate and fully-
global DEM with a spatial resolution of 12 m and vertical accuracy better than 0.5 m 
[24,25]. 

TDM data have also been useful in the mapping of forest properties across biomes, 
in particular in densely forested areas with known ground topography [26–34]. Without 
topographic information, tree height estimation becomes challenging due to the lack of a 
suitable reference point. Although the exact topography is unknown for most parkland 
areas, the canopy cover is generally sparse, and tree height estimation may still be feasible 
with high-resolution TDM data. However, new challenges occur when mapping individ-
ual trees with high-resolution InSAR. Geometric distortions caused by the side-looking 
geometry introduce tree height-dependent range offsets, hindering tree positioning and 
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distorting tree crown outlines. Additionally, the significant ground scattering and pene-
tration into tree crowns introduce biases in tree height estimation. 

The main objective of this paper is to assess the potential of high-resolution TDM 
InSAR data for landscape-level mapping and monitoring of tree height in a parkland land-
scape in Burkina Faso with unknown topography. This work is part of a larger project 
focusing on exploring the unknown role of trees in crop production in agroforestry park-
lands; as such, it aims to provide a reliable method for landscape-scale mapping and mon-
itoring of tree height, which is a proxy of many other tree properties. In this paper, we 
first introduce a novel, model-based processing approach that mitigates range offset and 
ground scattering effects, which are especially significant when studying individual trees 
with high-resolution TDM data. Using seven spotlight-mode TDM acquisitions with azi-
muth resolution of 1.1 m, we show that the new processing approach provides a mean 
canopy elevation estimate that has better potential for tree height mapping than the com-
monly used phase height, both in terms of top-of-canopy tree height estimation and tree 
positioning. We also compare the results for 915 trees from 15 different species/genera and 
we observe and discuss two bias effects in the data: one caused by vegetation bias in the 
DTM, and one caused by crown shape variability across different species. Finally, we in-
vestigate the potential improvement in tree height estimation accuracy when using TDM 
data with empirical models, both alone and in combination with in situ data of diameter 
at breast height, crown diameter, and species. 

This paper begins with a description of the InSAR measurement method (Section 2) 
and the available experimental data (Section 3). Thereafter, the results are presented (Sec-
tion 4) and discussed (Section 5). Finally, conclusions are given in Section 6. 

2. Method 
InSAR is an active, microwave remote sensing tool capable of high-resolution eleva-

tion measurements, independent of clouds and solar illumination. InSAR systems use the 
phase difference between two complex-valued images acquired from slightly different 
positions in space to measure the elevation of objects above a reference surface [22]. Tan-
DEM-X (TDM) consists of two X-band (centre frequency: 9.65 GHz, wavelength: 3.1 cm) 
SAR satellites flying in a close tandem formation [35]. Because of the short wavelength 
and the small distance between the satellites (typically below 1000 m), the TDM DEM over 
vegetated areas often represents canopy height variations. However, there are several 
challenges associated with the estimation of vegetation height from a TDM DEM. 

Firstly, information about ground topography is needed for estimation of vegetation 
height from an InSAR DEM [36], ideally in the form of a digital terrain model (DTM). 
Since most global, wall-to-wall DEMs have been acquired with either high-frequency In-
SAR or optical data [37], they contain vegetation bias and are not useful as ground refer-
ence in densely vegetated areas. Airborne lidar scanning (ALS) can be used in combina-
tion with InSAR data to provide accurate forest height measurements [26,28,29,32,38], but 
ALS data are costly to acquire and are not available for most parts of the world. Space-
borne lidar sensors, like the Global Ecosystem Dynamics Investigation (GEDI) mission 
from NASA [39], are a viable option for global mapping of topography, but the spatial 
resolution of the acquired DTMs is still relatively low (1 km in the case of GEDI). 

Secondly, the elevation measured by an InSAR system is influenced by all objects 
within a resolution cell, which is slanted due to the side-looking geometry of SAR. Con-
sequently, the measured elevation depends on InSAR system configuration and geome-
try, as well as the distribution of targets within the resolution cell. In sparsely forested 
areas, ground and vegetation targets can be observed within the same resolution cell. Ad-
ditionally, geometric distortions prevail due to the projection of a three-dimensional scene 
onto a two-dimensional image plane [40]. 

Thirdly, the difference between the top-of-canopy tree height and the canopy eleva-
tion perceived by the radar depends on canopy density, shape, structure, phenology, and 
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moisture, as well as radar polarisation and incidence angle. The relationship between el-
evation measured with TDM and top-of-canopy height varies in time and with acquisi-
tions. 

Figure 1 shows the geometry of an InSAR measurement of a single tree with top-of-
canopy tree height ℎ୲୭୮, average tree crown diameter ܦୟ୴୥, and stem diameter at breast 
height (1.3 m) ݀ୠ୦. Two InSAR quantities used in this paper are also indicated: ℎ୮୦ୟ is 
the phase height, i.e., the difference between the DEM and the DTM, while ℎୡ୬୮ is the 
mean canopy elevation above the DTM. The slanted geometry of the InSAR measurement 
is also shown; as a result, ground and canopy objects within the same resolution cell are 
located at a ground range offset Δݎ୥୰. 

 
Figure 1. Illustration of some quantities used in this paper. The top-of-canopy tree height ℎ௧௢௣ is a 
purely geometrical quantity. Two InSAR quantities related to tree height are also shown: (1) Phase 
height (ℎ୮୦ୟ) is the estimated difference between a digital elevation model (DEM) and a digital ter-
rain model (DTM). (2) Mean canopy elevation (ℎୡ୬୮) is a model-based estimate of canopy height 
above the DTM. The ground range offset Δݎ୥୰ is caused by geometrical distortion due to the slanted 
measurement geometry of SAR. ܦୟ୴୥ is the average diameter of the tree crown and ݀ୠ୦ is the stem 
diameter at breast height (1.3 m). 

Table 1 contains a summary of different metrics (mostly height-related) used 
throughout this paper, including some that will be introduced later. 

In the next section, we define ℎ୮୦ୟ in terms of the InSAR data. Thereafter, we define 
the model used to compute ℎୡ୬୮ from ℎ୮୦ୟ and coherence data, as well as the geometric 
correction Δݎ୥୰. Finally, we discuss the relationship between ℎୡ୬୮, ℎ୮୦ୟ, and ℎ୲୭୮. 
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Table 1. Summary of some metrics used throughout this paper. 

Metric Explanation 
In situ-measured tree properties ℎ୲୭୮ Top-of-canopy height ݀ୠ୦ Stem diameter at breast height (1.3 m) ܦୟ୴୥ Crown diameter averaged across two perpendicular directions 

Raster data 
DTM Digital terrain model (estimated ground elevation above a reference surface) 
DEM Digital elevation model (interferometric height above a reference surface) ℎ୮୦ୟ Phase height (DEM elevation above the DTM) ℎୡ୬୮ Mean canopy elevation (model-based estimate of canopy elevation above the DTM) 

Tree height estimates ℎത୮୦ୟ Maximal ℎ୮୦ୟ within the extent of the crown for a single tree ℎതୡ୬୮ Maximal ℎୡ୬୮ within the extent of the crown for a single tree ℎ୮୦ୟ⋆  Calibrated ℎത୮୦ୟ (shifted by a constant so that a regression line for all trees goes through zero) ℎୡ୬୮⋆  Calibrated ℎതୡ୬୮ (shifted by a constant so that a regression line for all trees goes through zero) ℎ෠୲୭୮ Top-of-canopy height estimate from an empirical model 
Model parameters ℎ୘୐୑ Distance between ground and vegetation levels in the two-level model (TLM) 

2.1. Phase Height 
The main interferometric quantity is the complex correlation coefficient (ߛ෤), defined 

as [22]: ߛ෤ = ௝థ݁ߛ = E൫ݏଵݏଶ∗݁ି௝థబ൯ඥE(|ݏଵ|ଶ)E(|ݏଶ|ଶ)  (1)

where ݏଵ and ݏଶ are two single-look complex (SLC) images acquired by an InSAR sys-
tem; ߛ =  ߶ ;෤| is the coherence, i.e., the magnitude of the complex correlation coefficientߛ|
is the interferometric phase; ߶଴ is a modelled interferometric phase for a reference sur-
face; and E(⋅) is the expectation value operator. Coherence is a value between 0 and 1 
representing the degree of similarity between ݏଵ and ݏଶ, while interferometric phase is 
the phase difference between ݏଵ and ݏଶ, corrected for the variability induced by the ref-
erence surface. In practical application, the expectation value in (1) is replaced by spatial 
averaging using a sliding window. The coherence and phase estimated using this ap-
proach are affected by well-known errors [22]. In the case of coherence, coherence overes-
timation occurs for low numbers of samples and/or low coherence values. In the case of 
interferometric phase and disregarding 2ߨ phase ambiguities, the estimator is unbiased, 
but the estimated phase has a zero-mean Gaussian error. 

Assume a well-designed InSAR system, an acquisition geometry (in terms of inci-
dence angle and distance between the two satellites) providing good sensitivity to typical 
vegetation heights, negligible temporal change between the two acquisitions, and ade-
quate signal processing including common-band and wavenumber shift filtering. Further-
more, assume that ߶଴ in (1) represents the topographic phase modelled from a DTM. Un-
der these assumptions, phase height can be estimated from (1) using: ℎ୮୦ୟ = unw(ߛ෤)ߢ  (2)

where unw(⋅) represents unwrapping, i.e., estimation of phase and removal of 2ߨ ambi-
guities; and ߢ is the height-to-phase conversion factor, determining the sensitivity of the 
InSAR system to height variations. ߢ depends on system properties such as wavelength, 
separation between the satellites, and incidence angle [41]. ߢ is related to the height-of-
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ambiguity (HOA), i.e., the height offset corresponding to a 2π shift of the interferometric 
phase, according to: ߢ = 2πHOA. 

Note that in (2), unwrapping is done after topographic phase (߶଴) removal in (1). It 
is also possible to estimate ℎ୮୦ୟ by first creating a DEM and then subtracting a DTM. 
However, because the DEM is expected to have larger height variations than ℎ୮୦ୟ, that 
approach is more susceptible to phase unwrapping errors. 

2.2. Mean Canopy Elevation 
Volume decorrelation is a loss of coherence caused by the distribution of targets in 

the direction perpendicular to the image plane. Several models for volume decorrelation 
in vegetation have been used with TDM data in the past [26,28,29,33,42]. In this paper, we 
will use the two-level model (TLM) [29,43], where the scattering is assumed to originate 
from only two levels. It directly separates ground and canopy contributions in InSAR data 
and does not require multi-polarised data or allometric equations. In the TLM, volume 
decorrelation is modelled using two discrete levels, ground and vegetation [44]: ߛ෤୴୭୪ = 1 − ߞ + ௝఑௛౐ై౉ (3)݁ߞ

where ζ is the vegetation scattering fraction and ℎ୘୐୑ is the elevation of the vegetation 
level above the ground level. The vegetation scattering fraction describes the distribution 
of scattering between the two levels, and it depends on the canopy cover ߟ and ground-
to-vegetation backscatter ratio ߩ as [44]: ߞ = 1)ߟ − ߩ(ߟ +  .ߟ

In this paper, we use the multiplicative coherence model from [22,45] to estimate vol-
ume decorrelation using: ߛ෤୴୭୪ = ଴ (4)ߛ෤ߛ

where ߛ is the complex correlation coefficient from (1) and ߛ଴ is an estimate of signal-to-
noise decorrelation, i.e., the loss of similarity due to different noise representations in the 
two images [45]. Note that (4) neglects all decorrelation effects other than volume and 
signal-to-noise decorrelation. By fitting model (3) to the measured and calibrated data 
from (4), estimates of ζ and ℎ୘୐୑ are obtained. 

The ℎ୘୐୑ estimated above contains the ground range offset Δݎ୥୰ described at the be-
ginning of Section 2 and shown in Figure 1. If ܧ and ܰ are the respective easting and 
northing coordinates (in metres) of the measured ߛ  and ℎ୮୦ୟ  data, then the value of ℎ୘୐୑ at these coordinates is assumed to represent the mean canopy elevation (ℎୡ୬୮) at a 
position shifted in ground range away from the radar by Δݎ୥୰. For a right-looking system 
(like TanDEM-X) and disregarding topographic undulations, ℎୡ୬୮ can be estimated from ℎ୘୐୑ (in metres) through the following interpolation: ℎୡ୬୮ ቆܧ + cos ߙ ℎ୘୐୑(ܧ, ܰ)tan ,ܧ)ߠ ܰ) , ܰ − sin ߙ ℎ୘୐୑(ܧ, ܰ)tan ,ܧ)ߠ ܰ)ቇ = ℎ୘୐୑(ܧ, ܰ) (5)

where ߠ  is the incidence angle and α is the flight heading angle (see Figure 2). The 1/ tan ߠ  factor maps ℎ୘୐୑  to the ground range offset Δݎ୥୰ , while factors cos α  and − sin α project Δݎ୥୰ in the east and north directions, respectively. 
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(a) (b) 

Figure 2. Acquisition geometry for a right-looking SAR system, with the incidence angle (ߠ) and heading angle (ߙ) shown 
together with the principal axes of a SAR acquisition. (ܧ, ܰ) are the respective east and north coordinates of a grid cell. 
(a) Elevation plane; (b) ground plane. 

2.3. Estimation of Tree Height 
Both ℎୡ୬୮ and ℎ୮୦ୟ provide biased estimates of ℎ୲୭୮ due to the penetration of X-

band radar signals into the canopy and residual effects of ground topography and inac-
curacies in the DTM. Note that ℎ୮୦ୟ includes the ground scattering contribution, which ℎୡ୬୮ aims to mitigate. 

In this subsection, we use models to address two potential bias sources: crown shape 
variations and vegetation bias from the DTM. In Section 3.4 we introduce some empirical 
models used to compensate for these effects. Other effects, including varying canopy den-
sity, moisture, and phenology, are addressed further in Section 5. 

2.3.1. Effect of Crown Shape 
For the high-resolution InSAR data studied in this paper, tree crowns often occupy 

several grid cells. In this paper, we approximate a tree height measurement by taking the 
topmost pixel within the tree crown extent of the images of ℎ୮୦ୟ and ℎୡ୬୮. The corre-
sponding tree height proxies are referred to as ℎത୮୦ୟ and ℎതୡ୬୮, respectively, with the bar 
symbol indicating the selected topmost pixel. 

Trees with the same top-of-canopy height ℎ୲୭୮, but with differently shaped crowns 
may have different ℎതୡ୬୮ values due to different distribution of canopy objects within the 
topmost pixel (and, indirectly also different ℎത୮୦ୟ values). This is illustrated with a geo-
metric model in Figure 3a. The model assumes ellipsoidal tree crowns with the horizontal 
semiaxes both equal to ஽౗౬ౝଶ  and the vertical semiaxis equal to ௛౪౥౦ଶ . Furthermore, we as-
sume no penetration into the tree crown and that the resolution cell giving ℎതୡ୬୮ is centred 
on the tree trunk and has a width δୈ୉୑ < -ୟ୴୥. This crown shape bias can then be modܦ
elled as the maximal height difference within the resolution cell: 

ୱ୦ୟ୮ୣ݌ = − ℎ୲୭୮2 ቌ1 − ඨ1 − ୟ୴୥ଶܦୈ୉୑ଶߜ ቍ (6)

with the negative sign indicating underestimation of tree height. 
Figure 3b shows expression (6) plotted against ܦୟ୴୥/ℎ୲୭୮, which is an indicator of 

canopy shape, with lower values indicating narrow canopies and higher values indicating 
wide canopies. Three values for ℎ୲୭୮ are used and ߜୈ୉୑ = 3 m is assumed. The effect of 
crown shape bias is largest for shorter trees and/or trees with narrow canopies (low ܦୟ୴୥/ℎ୲୭୮). For taller trees or trees with wider canopies, the bias is typically less than −1.0 
m. 
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(a) (b) 

Figure 3. A simple geometric model is used to investigate the effect of crown shape on the observed difference between ℎ୲୭୮ and ℎୡ୬୮. (a) Trees are modelled as ellipsoids and crown shape bias is the maximal height difference within a reso-
lution cell centred on the treetop. (b) Sample modelling results for ߜୈ୉୑ = 3 m. 

2.3.2. Effect of Vegetation Bias from the DTM 
Vegetation bias is the residual effect of vegetation on a digital terrain model (DTM), typ-

ically resulting in an overestimation of topographic height in vegetated areas, see Figure 4a. 
This, in turn, manifests itself as underestimation of tree height if a biased DTM is used as 
reference. In this work, we use a low-resolution InSAR DEM as a DTM. Overall, this ap-
proach provides good results in sparsely forested areas (like the parklands studied here). 
However, vegetation bias from the DTM may still be noticeable around tall trees with 
wide canopies. 

Vegetation bias from the DTM can be modelled using the TLM described in Section 2.2. 
We here assume that the average canopy cover within a DTM resolution cell is ߟ and the 
height of all trees is ℎ୘୐୑. Additionally, we assume that the backscattering coefficients for 
ground and vegetation are equal (ߩ = 1) and that there is no penetration into tree cano-
pies. Under these assumptions, the effect of vegetation bias from the DTM is modelled by 
the TLM expression (3) to: ݌ୈ୘୑ = − ߢ1 unw(1 − ሾ1ߟ − ݁௝఑௛౐ై౉ሿ) (7)

where the minus sign reflects the fact that a positive vegetation bias in the DTM causes a 
negative bias in the ℎୡ୬୮ (and ℎ୮୦ୟ). 

The resulting bias effect is shown in Figure 4b, for different forest height and canopy 
cover values, and assuming ߢ = 0.063 (HOA ൎ 100 m). For the studied forest area, the 
average tree height is about 9 m and the average canopy cover at 1 ha scale is typically 
15%, so the modelled effect of vegetation bias from the DTM is −1.3 m. For some 1 ha areas 
centred around tall trees with wide canopies, the average height at 1 ha-scale can reach 16 
m and canopy cover can reach 25%; in that case, effect of vegetation bias in the DTM can 
cause a bias about −3.7 m. Furthermore, if penetration into vegetation canopies and crown 
shapes are also considered, the vegetation bias will be less significant. It is thus expected 
that only for some of the largest trees, the effect of vegetation bias will be noticeable. 
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(a) (b) 

Figure 4. The effect of vegetation bias from the DTM on tree height estimation. (a) Vegetation bias 
is the offset between the DTM and the true ground surface, caused by vegetation objects. (b) Sample 
results showing the effect of vegetation bias from the DTM on tree height estimation, as modelled 
by TLM for ߢ = 0.063 (HOA ൎ 100 m). 

3. Experimental Data 
3.1. Test Site 

Saponé (12.08° N, 1.57° W) is a rural commune located about 30 km south from Oua-
gadougou, the capital of Burkina Faso (Figure 5). The test site is a 10 km × 10 km area 
dominated by parklands, but also featuring other land cover classes, such as patches of 
woodlands, small-scale plantations (Mangifera indica L., Eucalyptus camaldulensis Dehnh., 
and Tectona grandis L.f.), and riparian formations. The terrain is relatively flat, with alti-
tudes varying between 293 and 363 m above sea level [46]. The climate is semi-arid, where 
the mean annual rainfall is around 800 mm with high inter-annual and inter-seasonal var-
iability. The rainy season generally extends between May and October, with July and Au-
gust producing the largest proportion of rainfall. The dry season features only sporadic 
and limited rainfall, and typically starts around November and lasts until May or June. 

The tree cover in the parklands is actively shaped by the farmers practicing naturally 
assisted regeneration, where favoured tree species are protected when preparing the 
fields before sowing [5]. Crown pruning is also practiced, to revitalise fruit production, 
limit shading of crops, and provide fodder [47]. Mean tree canopy cover within the test 
site is around 15 percent. The tree cover is dominated by traditional agroforestry species, 
including the native V. paradoxa, P. biglobosa, and Lannea microcarpa Engl. and K. Krause, 
as well as M. indica [48], native to the Indian subcontinent but often cultivated in the area. 
Although these species are generally considered deciduous, they are seldom leafless due 
to a progressive leaf replacement throughout the year [49]. Notable exceptions include L. 
microcarpa, which loses all its leaves early in the dry season, and F. albida, which has re-
verse phenology and is foliated only during the dry season. 



Remote Sens. 2021, 13, 2747 10 of 26 
 

 

 
Figure 5. Coverage of the data used in this study and location of the Saponé test site. Ouagadougou, 
the capital of Burkina Faso, is located about 30 km north of Saponé. The outline for optical data 
represents the coverage of the two high-resolution satellite images used in this study (one from 
WorldView-2 and one from Pléiades). Basemap: © OpenStreetMap contributors, CC-BY-SA. 

3.2. Reference Data 
Two orthorectified, high-resolution optical satellite images over Saponé were used in 

this study: one image acquired in December 2012 with the WorldView-2 satellite and one 
image acquired in October 2017 with a Pléiades satellite. Both images had a ground sam-
pling distance of about 50 cm. 

For initial geocoding of the TDM spotlight-mode data, we used the freely available, 
global 90 m TDM DEM [25]. We did not use the available higher-resolution TDM DEMs 
because we wanted to reduce vegetation bias, and the resolution of 90 m was found suf-
ficient for initial geocoding in this relatively flat test site. 

The in situ tree inventory data included three datasets collected in 2012, 2017 and 
2018 (Table 1). For each dataset, trees with stem diameter at breast height (݀ୠ୦, measured 
at 1.3 m) ≥ 5 cm were georeferenced using a handheld Garmin Oregon 550 GPS and tree 
species were recorded. Top-of-canopy tree height (ℎ୲୭୮) was measured using a Haglöf 
electronic clinometer from a distance between 10–20 m, depending on the line of sight. 
The average crown diameter (ܦୟ୴୥ ) was determined by averaging two perpendicular 
crown diameter measurements. Positional uncertainties related to GPS accuracy were ac-
counted for by manually matching easily identifiable trees with the high-resolution opti-
cal imagery using information on crown diameter, height, and species. 

The in situ dataset from 2012 was collected between October and December within 
76 plots (50 m × 50 m in dimensions), randomly distributed throughout the 100 km2 test 
site and equally divided between three canopy cover classes, derived using the 
WorldView-2 image [15,20,48]. This resulted in a total of 1125 measured trees. 

The in situ dataset from 2017 was collected in October using a sampling approach 
where plots were randomly placed in active parkland fields identified in the Pléiades im-
age acquired two weeks before the inventory. This dataset consisted of 637 trees distrib-
uted over the entire 100 km2 test site. 

The in situ dataset from 2018 was acquired in June. Three large plots (about 500 m× 
100 m in dimensions) were laid out in the central part of the test site, and a total of 321 
trees were measured within these three plots. The three plots were chosen to cover areas 
with well-separated trees. 

The three datasets were subsequently filtered to only include trees covered by all 
TDM acquisitions (see Section 3.3 and Figure 5). Trees that had undergone visible change 
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(e.g., removal or significant pruning) between the December 2012 WorldView-2 image 
and the October 2017 Pléiades image were also excluded. The remaining trees were then 
sorted by species (or genus, if species could not be determined) and species/genera with 
less than five trees were excluded from the dataset. This resulted in a total of 915 trees left 
for this analysis, representing 15 different species/genera, see Table 2. 

Note that although the TDM data were acquired in early 2018, the temporal offsets 
between all three in situ datasets and the TDM data were ignored in this study. In partic-
ular, this concerns the dataset from 2012, which was included because it contained the 
largest number of in situ measured trees, allowing a more reliable statistical analysis and 
a more extensive study of the effect of tree species; also, it featured trees with the lowest 
average tree heights and crown diameters, thus improving the sampled interval of tree 
heights and crown diameters, see Table 2. Additionally, the growth rate for most of the 
tree species is low in the relevant conditions and our empirical investigations showed no 
noticeable effect of temporal difference between the three datasets. 

Table 2. Summary of the in situ data from Saponé, Burkina Faso, used in this study. The second 
column from the left contains the number of trees fulfilling the conditions described in Section 3.2, 
as well as the total number of trees sampled in field. 

Dates Used Trees 
(Total) 

ℎ୲୭୮ (m) ܦୟ୴୥ (m) 
Min Mean Max Min Mean Max 

October-
December 2012 

401 (1125) 2.5 7.0 20.0 1.0 6.0 28.0 

October 2017 241 (637) 2.0 9.9 25.0 2.0 9.3 27.7 
June 2018 273 (321) 3.5 11.1 23.9 2.0 8.2 25.0 

All 915 (2083) 2.0 9.0 25.0 1.0 7.5 28.0 

3.3. TanDEM-X Data Processing 
This study used a total of seven HH-polarised TDM spotlight-mode acquisitions 

made between January and April 2018. Three acquisitions were made from the descend-
ing orbit (flight heading around 191° relative to true north), at an incidence angle of 32 
degrees (at scene centre), with HOA values between 39 and 55 metres, and with approxi-
mate ground range and azimuth resolutions at scene centre of 2.1 and 1.1 metres, respec-
tively. The remaining four acquisitions were made from the ascending orbit (flight head-
ing about 349°), at an incidence angle of about 25 degrees, with HOAs between 49 and 87 
metres, and with ground range and azimuth resolutions of 2.8 and 1.1 metres, respec-
tively. Table 3 contains a summary of the acquisition parameters, together with air tem-
peratures recorded at Ouagadougou Airport at the time of acquisition [50]. All acquisi-
tions were made during the dry season and no precipitation was recorded at Ouagadou-
gou Airport during the 72 h prior to any of the seven acquisitions [50]. Figure 5 shows the 
approximate outlines of the ascending and descending acquisitions. The joint area cov-
ered by all seven acquisitions was 4200 hectares.  

All acquisitions from the same orbit were co-registered to one single master image 
using the GAMMA software package [51]. The remaining processing was then conducted 
using Python scripts based on [52]. Fine-resolution interferograms (images of ߛ෤) were 
formed using a sliding 1 × 2 window (range × azimuth), giving an approximate azimuth 
resolution of 2.2 m and ground range resolutions of 2.1 m for the descending data and 2.8 
m for the ascending data. For coherence, a 5 × 5 window was used to reduce bias in coher-
ence estimation [22]. 

Next, orbit state vectors and the free global 90 m TDM DEM [25] were used to create 
simulated DEM phase images, which were then subtracted from the fine-resolution inter-
ferograms, providing flattened interferograms. These were subsequently filtered using a 
sliding 45 × 45 averaging window, producing flattened interferograms with an approxi-
mate resolution of 100 m. A digital terrain model (DTM) was created from these coarse 
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interferograms by unwrapping and scaling to height, then averaging across all seven ac-
quisitions, and finally adding back to the 90 m TDM DEM. Phase height (ℎ୮୦ୟ) images 
were created by first subtracting the coarse-resolution flattened interferograms from the 
fine-resolution flattened interferograms, and then unwrapping and scaling to height. 

Table 3. Summary of the SAR acquisitions over Saponé, Burkina Faso used in this study. “No” refers to the relative orbit 
number, “Dir” refers to orbit direction (“dsc” is descending and “asc” is ascending), ߙ and ߠ are the flight heading and 
incidence angles, respectively (see Figure 2), “Pol” refers to polarisation, “Res” refers to resolution (“grg” is ground range 
and “az” is azimuth), and “Temp” refers to temperature. 

Date Time (UTC): 
Orbit 

Pol HOA (m) 
Res (m) 

Temp (°C) 
No Dir ࣂ (∘) ࢻ (°) grg az 

24 January 2018 
6:03 AM 63 dsc 191 32 

HH 

39 
2.1 1.1 

16 
26 February 2018 47 24 

31 March 2018 55 25 
9 February 2018 

6:09 PM 147 asc 349 25 

49 

2.8 1.1 

28 
20 February 2018 59 36 

25 March 2018 79 33 
5 April 2018 87 37 

The seven phase height images obtained were then geocoded and averaged into two 
images: ℎ୮୦ୟୟୱୡ  for the ascending orbit and ℎ୮୦ୟୢୱୡ  for the descending orbit. Then, spatial 
cross-correlation was used to match ℎ୮୦ୟୟୱୡ  and ℎ୮୦ୟୢୱୡ  to each other, and the final phase 
height image ℎ୮୦ୟ was created by taking the maximum phase height value from ℎ୮୦ୟୟୱୡ  
and ℎ୮୦ୟୢୱୡ , individually for each pixel. Coherence was calibrated using (4), where signal-
to-noise decorrelation ߛ଴ was estimated using the SNR decorrelation model from [35,45] 
and the noise model provided with the TDM data [53]. 

TLM fitting was carried out using the principles of active surface modelling, by min-
imising the following cost function based on [54,55] with respect to ℎ୘୐୑ and ζ: 

,ଵ(ℎ୘୐୑ܬ (ߞ = ଵ(ℎாݓ + ℎே) + ଶ(ℎாாݓ + ℎேே) + ෍ห1 − ߞ + ௝఑೔௛౐ై౉݁ߞ − ෤௜หଶேߛ
௜ୀଵ  (8)

where ݓଵ and ݓଶ are inversion parameters; ℎா and ℎே are the first order spatial deriv-
atives of ℎ୘୐୑ in the east and north directions, respectively; ℎாா and ℎேே are the respec-
tive second order spatial derivatives; ߛ෤௜ is the volume decorrelation for acquisition ݅ es-
timated using (4); ߢ௜ is the corresponding height-to-phase scaling factor; |⋅| is the mag-
nitude operator; and ܰ is the total number of acquisitions in each geometry (three for 
descending, four for ascending). A multi-temporal TLM inversion approach was used be-
cause it is less susceptible to phase unwrapping errors when used with data with different 
HOA values [44]. The minimisation of (8) was carried out using a gradient descent algo-
rithm, with the smoothing parameters ݓଵ  and ݓଶ  determined empirically to provide 
smoothed height estimates and sharp canopy edges when evaluated against optical im-
agery. This procedure yielded two height images, ℎ୘୐୑ୟୱୡ  and ℎ୘୐୑ୢୱୡ , one for each flight 
heading. 

Each pixel was subsequently interpolated using (5), separately for ℎ୘୐୑ୟୱୡ  and ℎ୘୐୑ୢୱୡ . 
In case multiple grid cells were shifted to the same position, the maximal height value was 
selected. This procedure resulted in two images of mean canopy elevation: ℎୡ୬୮ୟୱୡ  and ℎୡ୬୮ୢୱୡ , 
one for each orbit direction, which were subsequently merged into the final mean canopy 
elevation image (ℎୡ୬୮), by minimizing the following cost function based on [54,55] with 
respect to ℎୡ୬୮: ܬଶ൫ℎୡ୬୮൯ = ଵ(ℎாݓ  + ℎே) + ଶ(ℎாாݓ  + ℎேே) + ൫ℎୡ୬୮ − ℎୡ୬୮ୟୱୡ ൯ଶ + ൫ℎୡ୬୮ − ℎୡ୬୮ୢୱୡ ൯ଶ (9)
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where ݓଵ and ݓଶ are inversion parameters; ℎா and ℎே are the first order spatial deriv-
atives of ℎୡ୬୮, in the east and north directions, respectively; and ℎாா and ℎேே are the re-
spective second order spatial derivatives. The minimization was carried out in the same 
way as for (8). 

3.4. Estimation of Tree Height from Phase Height and Mean Canopy Elevation 
Tree-level estimates of ℎ୮୦ୟ and ℎୡ୬୮ were extracted for all reference trees described 

in Section 3.2 and Table 2 as the maximal pixel values found within the visible parts of the 
canopies: ℎത୮୦ୟ = max(ா,ே)∈் ℎ୮୦ୟ(ܧ, ܰ) ℎതୡ୬୮ = max(ா,ே)∈் ℎୡ୬୮(ܧ, ܰ) 

where ܶ is the set of grid cells located within the extents of the tree crown. A simple ge-
ometric model was used to determine ܶ: all trees were assumed to have circular crowns 
with crown diameter ܦୟ୴୥ and, in case of overlapping tree crowns, the taller trees were 
assumed to obscure the shorter trees within the area of crown overlap. Tree position was 
estimated from the spatial position of the maximal pixel value within the tree crown. 

Due to the complex way in which ℎത୮୦ୟ and ℎതୡ୬୮ depend on tree properties (see Sec-
tion 2.3), we used empirical models to estimate ℎ୲୭୮ from these quantities. All models 
were of the following form: ݂൫ℎ୲୭୮൯ = ଴݌ + ଵ(݂(ℎ⋆)݌ + ߳ଵ) + ୟ୴୥൯ܦଶ݂൫݌ + ୟ୴୥൯ܦସ݂ଶ൫݌+ ଷ݂(݀ୠ୦)݌ + ହ݂ଶ(݀ୠ୦)݌ + ୟ୴୥൯݂(݀ୠ୦)ܦ଺݂൫݌ + ߳ଶ  (10)

where ߳ଵ  and ߳ଶ  are zero-mean Gaussian errors, ݂  is one of the two data transform 
functions: 
(i). Linear: ݂(ݔ) =  ݔ
(ii). Logarithmic: ݂(ݔ) = ln(ݔ). 

and ℎ⋆ is one of the two calibrated TDM-based proxies of tree height: 
(i). Calibrated phase height: ℎ⋆ = ℎ୮୦ୟ⋆ = ℎത୮୦ୟ − ܿ଴ (11)

(ii). Calibrated mean canopy elevation: ℎ⋆ = ℎୡ୬୮⋆ = ℎതୡ୬୮ − ܿଵ (12)

where ܿ଴ and ܿଵ are calibration constants estimated from the data. We investigated all 
possible variants of (10) with between one and seven parameters (i.e., up to six of the 
seven parameters ݌௜ set to zero), excluding the trivial case of a constant model (݂൫ℎ୲୭୮൯ ଴݌= + ߳ଶ). For each of the models, model parameters were estimated twice: once jointly for 
all tree species/genera, and once individually for each species/genus. This resulted in a 
total of 760 models. Depending on the type of data used, these 760 models consisted of 16 
models using TDM data only, 248 with in situ data only, and 496 models that combined 
in situ and TDM data. 

Calibration constants ܿ଴ and ܿଵ were estimated by fitting a linear model of ℎത୮୦ୟ or ℎതୡ୬୮ to in situ measured data for ℎ୲୭୮ by means of orthogonal distance regression (ODR), 
which is a regression technique assuming that some of the independent variables are also 
affected by a measurement error [56]. For models that included ݂(ℎ⋆) (i.e., with non-zero ݌ଵ), we used ODR to estimate the parameters by fitting to the in situ measured data and 
assuming that ݂(ℎ⋆) is the only independent variable with an associated uncertainty. 
Meanwhile, for models with ݌ଵ = 0, ordinary least squares (OLS) regression was used. In 
the case when model parameters were fitted individually for each species, the number of 
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trees within each species/genus was required to be at least ten times higher than the num-
ber of parameters to be estimated. For that reason, the number of used trees and spe-
cies/genera was reduced than for the species-specific models. 

The estimated model parameters, the inverse transforms of ݂, and (10) were used to 
predict an initial top-of-canopy height ℎ෠୲୭୮ᇱ . This estimate was subsequently corrected for 
bias using: ℎ෠୲୭୮ = ൻℎ୲୭୮ൿൻℎ෠୲୭୮ᇱ ൿ ℎ෠୲୭୮ᇱ . 

This correction aimed to remove both the logarithmic bias occurring when using ݂(ݔ) = ln(ݔ) and the bias occurring when zero-intercept (݌଴ = 0) models were used. 

4. Results 
This section consists of five parts. First, we study samples of the produced maps of ℎ୮୦ୟ 

and ℎୡ୬୮, and assess their potential for mapping canopy height variations (Section 4.1). Then, 
in Section 4.2, we assess tree positioning accuracy. Subsequently, we study the correlation 
between TDM proxies of top-of-canopy height (ℎത୮୦ୟ and ℎതୡ୬୮) and the in situ measured ℎ୲୭୮; first, we do this for all 915 trees from 15 species/genera (Section 4.3), and then indi-
vidually for each species/genus (Section 4.4). Finally, we use empirical models to evaluate 
the potential of TDM data for tree height estimation, with and without supporting in situ 
measurements (Section 4.5). 

4.1. Geometric Distortion 
Figure 6 shows seven different images for the same 20-hectare area in Saponé. The 

area features a typical parkland environment, with trees of various heights and crown 
diameters scattered among agricultural fields (Figure 6a). Backscatter intensity images for 
the descending and ascending orbit directions illustrate effects of the side-looking geom-
etry of SAR (Figure 6b,c). Shadows occur in areas obscured by the trees, while the parts of 
tree crowns facing the radar are brighter than the rest of the image, indicating enhanced 
vegetation scattering. These effects are especially prominent for the row of large trees vis-
ible in the central part of the studied area (area A in Figure 6). Varying degrees of distor-
tion and shadowing between the ascending and descending data is due to the different 
incidence angles for the two orbit directions (32 degrees for descending, 25 degrees for 
ascending). Additionally, the oblique side-looking geometry causes a tree height-depend-
ent ground range offset. This becomes evident when images of ℎ୮୦ୟ from descending and 
ascending directions are compared (Figure 6d,e): for large, tall trees, the difference be-
tween ascending and descending is larger than for smaller trees. Therefore, the combina-
tion of ascending and descending phase height images using a constant (space-invariant) off-
set produces an image that is blurred for some of the trees. This effect is clearly visible for areas 
B and C, where some trees are well focussed while others are blurred in Figure 6f, indicating 
different range offsets. The model-based approach proposed in Section 2.2 provides an image 
of ℎୡ୬୮, which is better focussed across different tree heights (Figure 6g). Again, this becomes 
obvious for areas B and C, where all trees are better focussed than in Figure 6f. Moreover, 
for the image of ℎୡ୬୮ in Figure 6g, the outlines of the tree canopies are better matched 
with the reference satellite photo in Figure 6a, compared with the image shown in Figure 6f. 
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Figure 6. Sample mapping results for a 1000 m × 200 m area in Saponé. The seven panels show: (a) orthorectified satellite 
image from Pléiades, backscatter coefficient (σ଴) averaged across all images for the (b) descending and (c) ascending orbit 
directions, with red arrows indicating look directions; images of ℎ୮୦ୟ for the (d) descending and (e) ascending orbit di-
rections; (f) image of ℎ୮୦ୟ combined from ascending and descending data; and (g) image of ℎୡ୬୮ combined from ascend-
ing and descending data. Solid lines outline the three areas A, B, and C discussed in Section 4.1. 

4.2. Tree Positioning Accuracy 
Table 4 evaluates tree positioning accuracy when using maps of ℎ୮୦ୟ and ℎୡ୬୮. The 

offset between tree positions from TDM and in situ data is quantified in terms of its mean 
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value and standard deviation in the east and north directions. Three tree height groups 
are used: short (up to 8 m), medium (8–16 m), and tall (above 16 m). For these three groups, 
the respective tree counts are: 418, 436, and 61. The results are provided separately for 
ascending and descending data, and for the final, combined images.  

The tree height-dependent range offset primarily manifests itself as a bias (mean off-
set) in the eastern direction observed in phase height images. For tall trees, the treetops 
are shifted on average 6.0 m in the eastern direction for the ascending orbit and −3.9 m for 
the descending orbit. The bias is lower for shorter trees because the co-registration routine 
uses spatial cross-correlation, which matches the two images using the more abundant 
short trees. By combining the ascending and descending data, the average bias is de-
creased, but the uncertainty in location is large, with the standard deviation for the east 
direction being 7.3 m. The corresponding values for the mean canopy elevation images 
are better: the tall trees are shifted in the east direction by about −0.6 m for the ascending 
orbit and 2.8 m for the descending orbit, and the standard deviation for height positioning 
in the east direction is 3.5 m. In the north direction, the bias and standard error are typi-
cally much lower and similar for both phase height and mean canopy elevation. 

Table 4. Tree positioning performance for phase height and mean canopy elevation images, indi-
vidually for ascending and descending data and for the final, combined images. The results are 
provided separately for three tree height groups: short (below 8 m), medium (8–16 m), and tall 
(above 16 m), as well as for all trees. The biases (mean offsets) between measured and reference tree 
positions in the east and north directions are denoted with ߤா and ߤே, respectively, while the cor-
responding standard deviations are ߪா and ߪே. The highlighted values are discussed in Section 4.2. 

Phase height (ℎ୮୦ୟ) 
Orbit Direction: Ascending Descending Combined 

Tree height group: <8 8–16 >16 All <8 8–16 >16 All <8 8–16 >16 All ߤா −0.1 1.0 6.0 0.4 0.2 −0.5 −3.9 −0.2 −0.0 0.3 1.0 0.1 ߤே 0.2 0.2 0.9 0.2 0.0 −0.1 −0.5 −0.1 0.0 −0.1 1.3 0.0 ߪா 1.5 2.8 4.1 2.3 1.5 3.0 5.1 2.4 1.5 2.9 7.3 2.3 ߪே 2.4 2.9 3.4 2.6 1.5 2.8 4.1 2.2 1.6 2.8 3.3 2.1 
Mean canopy elevation (ℎୡ୬୮) 

Orbit direction: Ascending Descending Combined 
Tree height group: <8 8–16 >16 All <8 8–16 >16 All <8 8–16 >16 All ߤா −0.2 −1.2 −0.6 −0.6 0.1 1.5 2.8 0.6 −0.0 0.2 0.4 0.1 ߤே 0.2 0.6 −0.2 0.3 0.1 0.6 2.2 0.4 0.1 0.7 0.5 0.3 ߪா 1.6 2.5 5.5 2.2 1.4 2.8 3.7 2.2 1.5 2.5 3.5 2.0 ߪே 1.6 2.8 3.3 2.2 1.6 2.8 3.9 2.2 1.5 2.7 3.1 2.1 

4.3. Tree Height Estimation 
Figure 7 shows scatterplots comparing ℎത୮୦ୟ and ℎതୡ୬୮ to ℎ୲୭୮ for all 915 trees from 

15 species/genera used in this study. Bias is indicated with a red line obtained by fitting a 
linear function to the data using orthogonal distance regression. The corresponding bias 
equation is also given, together with the coefficient of determination (ܴଶ) for the regres-
sion. The respective estimation statistics are given in Table 5. 

The results indicate that ℎത୮୦ୟ is a biased estimator of tree height, and the bias varies 
with tree height. On average, for shorter trees, ℎത୮୦ୟ underestimates the tree height with 
over 2 m, and the underestimation increases to about 5 m for taller trees, as indicated by 
the red line in Figure 7a. For ℎതୡ୬୮, the bias is on average lower, and the underestimation 
is consistently below 2 m, as indicated by the red line in Figure 7b. Note that for some 
trees, the estimated phase height is negative. 

The intercept values shown in Figure 7 were subsequently used for calibration of 
phase height and mean canopy elevation, needed for the empirical models studied in Sec-
tion 4.5: ܿ଴ = −2.26 was used with (11) to obtain the calibrated phase height estimate 
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ℎ୮୦ୟ⋆ , while ܿଵ = −1.88 was used with (12) to obtain the calibrated mean canopy height 
estimate ℎୡ୬୮⋆ . 

 
 

(a) (b) 

Figure 7. Comparison of the estimated (a) phase height (ℎത୮୦ୟ) and (b) mean canopy elevation (ℎതୡ୬୮) 
with reference in situ tree height (ℎ୲୭୮) for all 915 trees from 15 species/genera inventoried during 
three field campaigns in Saponé. Green dots indicate individual trees. The solid red line describes 
the bias in the data, and it was obtained by fitting a linear model to the data using orthogonal dis-
tance regression. The solid black line shows the zero-bias case. The corresponding estimation statis-
tics are shown in Table 5. 

4.4. Effect of Species/Genera on Mean Canopy Elevation 
Figure 8 evaluates ℎതୡ୬୮ against ℎ୲୭୮, individually for each of the 15 species/genera 

represented in the reference data. Estimation statistics are provided, as well as the number 
of trees in each group and the average ℎ୲୭୮ and ܦୟ୴୥. Marker sizes are proportional to ܦୟ୴୥. 

For the four most abundant species/genera (V. paradoxa, Lannea spp., M. indica, and 
P. biglobosa), there is a clear correlation between ℎതୡ୬୮ and ℎ୲୭୮ (with a Pearson correla-
tion coefficient, ݎ୔, between 66% and 75%) and the standard error (SE) is 20–35% of the 
average ℎ୲୭୮. For the four less abundant species (Azadirachta indica A. Juss., Entada africana 
Guill. and Perr., Tectona grandis, and Eucalyptus camaldulensis), the correlation between ℎതୡ୬୮ and ℎ୲୭୮ is low (4–39%), and the relative SE values are higher (32–49%). Note that 
these groups contain some of the smallest trees in this study: Entada africana and Tectona 
grandis have the lowest average ܦୟ୴୥ and ℎ୲୭୮, while Eucalyptus camaldulensis and A. in-
dica have some of the lowest average ܦୟ୴୥. Finally, each of the remaining seven least abun-
dant species/genera (Ficus spp., Sclerocarya birrea (A. Rich.) Hochst., Bombax costatum Pel-
legr. and Vuillet., Acacia spp., Diospyros mespiliformis Hochst. ex A. DC., Terminalia laxiflora 
Engl. and Diels, and F. albida) shows good correlation between ℎതୡ୬୮ and ℎ୲୭୮ (65–96%), 
and a relative SE of 16–41%. 

Table 5. Tree height estimation statistics for ℎത୮୦ୟ and ℎതୡ୬୮. “Figure” refers to the figure with the corresponding scatter-
plot, ܰ is the number of available tree measurements, and ܵ is the number of species/genera represented in the available 
tree measurements. Bias and standard error metrics are given in three tree height categories: short trees (below 8 m), 
medium trees (8–16 m), and tall trees (above 16 m), as well as for all trees.  

Figure Tree Height Estimate ࡿ ࡺ 
  ࡼ࢘
(%) 

Bias (m) SE (m) 
<8 8–16 >16 All <8 8–16 >16 All 

Figure 7a ℎതୡ୬୮ 915 15 75 −0.7 −1.5 −3.9 −1.3 2.6 3.1 2.9 3.0 
Figure 7b ℎത୮୦ୟ 915 15 73 −2.7 −4.2 −7.7 −3.7 2.2 2.8 2.9 2.9 
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The largest average bias is observed for B. costatum (−4.5 m), Eucalyptus camaldulensis 
(−4.2 m), and Terminalia laxiflora (−2.8 m). These species have relatively narrow tree 
crowns: the average ℎ୲୭୮ is in the interval 8.8-11.6 m, while the average ܦୟ୴୥ is in the 
interval 4.9–7.7 m. The smallest average bias is observed for Acacia spp. (0.0 m), M. indica 
(−0.1 m), and D. mespiliformis (0.4 m). In contrast to the three species with the largest bias, 
these species have a typically higher ܦୟ୴୥ (6.0–8.6 m) while their average ℎ୲୭୮ is smaller 
(6.5–8.7 m), indicating wider crowns. For the remaining nine species/genera, the bias is 
between −2.4 and −0.8 m. A relatively large bias is observed for P. biglobosa (−1.5 m), which 
is the tallest tree in this comparison (average ℎ୲୭୮ of 15.6 m), with the widest crowns (av-
erage ܦୟ୴୥ of 18.0 m). 

The dependence of bias on ℎ୲୭୮ and ܦୟ୴୥ is investigated further in Figure 9, where 
the bias shown in Figure 8 is plotted against the ܦୟ୴୥/ℎ୲୭୮ ratio, which is an indicator of 
crown shape. A low ܦୟ୴୥/ℎ୲୭୮ indicates a tall and narrow tree crown, while a high ܦୟ୴୥/ℎ୲୭୮ indicates a short and wide crown. Marker sizes are proportional to average ℎ୲୭୮ 
and error bars are also shown, indicating the 25th and 75th percentiles of bias and ܦୟ୴୥/ℎ୲୭୮. 

There is a correlation between bias and ܦୟ୴୥/ℎ୲୭୮ . A larger underestimation of ℎ୲୭୮ observed for species/genera with low ܦୟ୴୥/ℎ୲୭୮, i.e., with narrow crowns. One nota-
ble exception from the general trend is P. biglobosa, for which a negative bias is measured, 
compared with the positive bias that would be expected from the overall trend. 

 
Figure 8. Dependence of the estimated mean canopy elevation (ℎതୡ୬୮) on the in situ-measured tree height (ℎ୲୭୮) and spe-
cies/genera for the 915 trees shown in Figure 6. ܦۦୟ୴୥ۧ and ۦℎ୲୭୮ۧ are the average crown diameter and tree height for each 
species while ܯ is the number of trees. Marker sizes are proportional to ܦୟ୴୥. 



Remote Sens. 2021, 13, 2747 19 of 26 
 

 

 
Figure 9. Bias (from Figure 8) versus average ܦୟ୴୥/ℎ୲୭୮ for the 15 species/genera. Marker sizes are proportional to the 
average ℎ୲୭୮ (also given in parentheses for each species/genus). The vertical and horizontal bars indicate the 25th and 
75th percentile values for each quantity. 

4.5. Tree Height Estimation with Empirical Models 
The potential of TDM height proxies and in situ data for tree height estimation was 

also investigated using empirical models. Although we investigated a total of 760 models, 
only a small subset of the best-performing models is presented here, while the reader is 
referred to Supplementary Materials for a comprehensive compilation of the results for 
all tested models. This evaluation serves three purposes: (i) models using only TDM data 
assess the potential of two different techniques for TDM-based tree height measurement, 
(ii) models using in situ data only provide performance metrics that can be used as bench-
mark when assessing the remote sensing-based methods, and (iii) models combining 
TDM proxies with in situ data provide an interesting operational alternative for long-term 
monitoring of trees with some, easy-to-measure quantities accessed from the ground and 
height monitored from satellite. Moreover, these models also assess the potential syner-
gies of TDM-based height estimation with future techniques capable of providing reliable 
estimates of, e.g., crown diameter and species. 

Overall, it was found that ℎୡ୬୮⋆  provided better tree height estimation results than ℎ୮୦ୟ⋆ , and logarithmic models typically performed better than linear. Of the two field-
measured metrics ܦୟ୴୥ and ݀ୠ୦, the latter provided better estimation results, both when 
used alone and in combination with the TDM-based estimates. Species-specific models 
provided significantly better results than species-independent models. 

Figure 10 shows scatterplots for six selected models, while Table 6 contains mathe-
matical expressions and performance metrics for the respective models. Each of the six 
models was the best-performing in terms of standard error (SE, i.e., the standard deviation 
of residuals) out of all tested models with that input data. In case multiple models gave 
the same SE (to the first decimal), the model with the fewest parameters was selected. 
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Table 6. Tree height estimation statistics for selected empirical models of TDM data and in situ-measurements. “Figure” 
refers to the figure with the corresponding scatterplot, ܲ is the total number of estimated parameters, ܰ is the number 
of available tree measurements, and ܵ is the number of species/genera represented in the available tree measurements. 
For the species-specific models, the ratio between the number of trees within each species/genus and the number of model 
parameters to-be-estimated was required to be at least 10, thus reducing the number of included species and the total 
number of trees. Bias and standard error metrics are given in three tree height categories: short trees (below 8 m), medium 
trees (8–16 m), and tall trees (above 16 m), as well as for all trees. This table is an excerpt from the full results that can be 
found in Supplementary Materials. 

Figure 
Model Properties ࡼ࢘  

(%) 
Bias (m) SE (m) 

Formula 16< 16–8 8> ࡿ ࡺ ࡼ All <8 8–16 >16 All 
Empirical models and species-independent parameters 

Figure 10a ln ቀℎ෠୲୭୮′ ቁ = ଵ݌ ln൫ℎୡ୬୮⋆ ൯ 1 915 15 75 0.8 −0.3 −3.0 0.0 2.4 2.9 2.8 2.8 

Figure 10b ℎ෠୲୭୮′ = ଴݌ +  ୟ୴୥ 2 915 15 76 1.5 −1.0 −3.3 0.0 1.3 2.4 4.0 2.6ܦଶ݌

Figure 10c ln ቀℎ෠୲୭୮′ ቁ = ଷ݌ ln(݀ୠ୦) 1 915 15 79 1.0 −0.4 −4.2 0.0 1.8 2.5 2.2 2.5 

Figure 10d ln ቀℎ෠୲୭୮′ ቁ = ଶ݌ ln൫ܦୟ୴୥൯ + ଷ݌ ln(݀ୠ୦)+ ସ݌ lnଶ൫ܦୟ୴୥൯ 
3 915 15 82 1.1 −0.6 −3.5 0.0 1.4 2.3 2.6 2.3 

Empirical models and species-specific parameters 
Figure 10e ℎ෠୲୭୮′ = ଴݌ + ⋆ଵℎୡ୬୮݌  16 853 8 79 0.7 −0.3 −2.4 0.0 2.2 2.7 3.2 2.6 

Figure 10f ln ቀℎ෠୲୭୮′ ቁ = ଶ݌ ln൫ܦୟ୴୥൯ + ଷ݌ ln(݀ୠ୦) 16 853 8 87 0.7 −0.3 −3.0 0.0 1.4 2.0 3.0 2.0 

Using TDM data alone in an empirical model results in a correlation of 75%, an SE of 
2.8 m and the error is similar for all three height groups (Figure 10a). For comparison, in 
situ-based measurements of average crown diameter (ܦୟ୴୥) and diameter at breast height 
(݀ୠ୦) give somewhat better overall results, although the performance varies more strongly 
with height: ܦୟ୴୥ seems to perform better for tall trees, while ݀ୠ୦ is a better estimate of 
height for shorter trees (Figure 10b,c). Combination of ܦୟ୴୥ and ݀ୠ୦ gives a correlation 
of 82% and an SE of 2.3 m (Figure 10d). Using species-specific models with TDM data 
clearly helps to mitigate some species-specific bias effects, improving the correlation to 
79% and the SE to 2.6 m (Figure 10e). Finally, for comparison, the best results obtained 
using in situ data only with species-specific models is a correlation of 87% and an SE of 
2.0 m (Figure 10f). The cases where TDM data are combined with in situ-measurements 
are also of interest. The results provided in Supplementary Materials indicate that ℎୡ୬୮ 
together with ݀ୠ୦ in the best-performing empirical model gives an SE of 2.3 m and a cor-
relation of 82% if species-independent models are used, and 2.1 m and 85%, respectively, 
for species-specific models. 

  
(a) (b) 

  
(c) (d) 



Remote Sens. 2021, 13, 2747 21 of 26 
 

 

  
(e) (f) 

Figure 10. Tree height estimation performance for the selected best-performing models using: (a) TDM data only, (b) ܦୟ୴୥ 
only, (c) ݀ୠ୦ only, (d) ܦୟ୴୥ and ݀ୠ୦, (e) TDM data and species information, (f) ܦୟ୴୥, ݀ୠ୦, and species information. Math-
ematical expressions and estimation statistics are shown in Table 6. For (a–d), the models were fitted to data from all 915 
trees, disregarding the species/genus of the trees. For (e,f), the models were fitted individually for each species/genus with 
at least ten times more trees than model parameters. In each panel, the first scatterplot from the left shows the estimated 
tree height (ℎ෠୲୭୮) on the ݕ-axis against the reference tree height (ℎ୲୭୮) on the ݔ-axis, while the second scatterplot shows 
the obtained tree height residual (ℎ୲୭୮ − ℎ෠୲୭୮) against average canopy diameter (ܦୟ୴୥). 

5. Discussion 
5.1. Tree Height Estimation Performance 

This paper assessed the potential of spotlight-mode, interferometric TanDEM-X 
(TDM) data for mapping of tree height in the parklands of Burkina Faso. Two approaches 
were compared: one using phase height (ℎ୮୦ୟ), i.e., the elevation of an InSAR digital ele-
vation model (DEM) above a digital terrain model (DTM); and another using mean can-
opy elevation (ℎୡ୬୮) derived using a novel, model-based processing approach correcting 
for the side-looking geometry of SAR. The latter, more complex processing approach pro-
vided a better geometric representation of canopy height variations, better tree position-
ing accuracy, and better tree height estimation performance, with a standard error (SE) of 
2.8 m (31% of the average tree height of 9.0 m) and a small overall bias for most trees. 

To the authors’ current knowledge, no studies so far have evaluated satellite-based 
measurements of individual tree height in parkland areas, while only a few studies have 
evaluated satellite-based estimation of individual tree height or average tree height within 
small plots or sparsely forested areas. [31] used TDM data to estimate tree height in north-
western Canada. A mean absolute error (MAE) of 0.72 m was reported for 4185 trees with 
an average reference height from ALS data of 2.47 m. In our study, the best model using 
only TDM data and all 915 trees from 15 species/genera would give a MAE of 2.3 m for an 
average ℎ୲୭୮ of 9.0 m. This would translate to a relative MAE of 25%, while for [31], the 
corresponding value would be 29%. [57] measured individual tree height in lichen wood-
lands in Canadian subarctic using WorldView-3 stereo-photogrammetry. A root-mean-
square error (RMSE) of 1.27 m was reported for 96 trees with heights in the interval 2–12 
m. [58] used full-waveform data from the ICESat GLAS spaceborne laser scanning system 
to estimate average tree height within 23 1.5-hectare footprints in a savanna landscape in 
Kruger National Park, South Africa. The best models used in the study provided an RMSE 
of 2.42 m for an average tree height range of 5–22 m. [59] used repeat-pass InSAR data 
from Sentinel-1 and RADARSAT-2 to estimate average tree height for 11 0.1-hectare plots 
with average canopy height of 12.7 m. The best obtained MAE and RMSE were 1.30 m and 
1.34 m, respectively. 

In this study, we showed that improvement of height estimation could be obtained 
by combining TDM measurements with selected in situ data. In particular, the use of ݀ୠ୦ 
proved advantageous from the point of view of tree height estimation: while using ݀ୠ୦ 
alone provided estimates with SE of 2.5 m, combination of ݀ୠ୦  and ℎୡ୬୮⋆  further im-
proved the estimation performance to an SE of 2.3 m. This observation has a practical 
implication: the measurement of ݀ୠ୦ is easy to conduct with simple tools (e.g., through 
circumference measurement with a measuring tape) and is not affected by canopy prun-
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ing or season, so it is expected to be more stable over time. Meanwhile, ܦୟ୴୥ is more dif-
ficult to measure and is affected by pruning, moisture, and phenology. However, while ݀ୠ୦ is difficult to measure with remote sensing methods, high-resolution optical satellite 
images can be used to estimate ܦୟ୴୥ [15]. For that reason, models combining TDM-based 
tree height metrics with ܦୟ୴୥ are also of interest for future applications. 

Furthermore, if species information is also available, then species-specific models can 
be derived, giving an improvement of TDM-based estimation performance and an SE of 
2.6 m. Although tree species determination from satellite data is a notoriously difficult 
task, especially in areas where species diversity is high and the geographical extent is large 
[60], species do not change over time which is useful for monitoring of existing trees or 
plantations. The development in spatiotemporal and spectral resolution of recent satellite 
systems and improvements in image classification methods may pave the way for accu-
rate tree species mapping in the near future [61]. 

The results obtained in this study and in [31] show that TDM has good potential for 
mapping and monitoring of height for individual trees, in particular in remote and/or fre-
quently cloud-covered areas, where other measurement methods are ineffective. In this 
study, to get a sufficiently large dataset of tree height measurements, we used in situ data 
acquired up to 6 years prior to the TDM measurements. Due to the lack of suitable infor-
mation on growth and pruning activities, we neglected temporal changes occurring be-
tween the in situ and TDM measurements. The unaccounted temporal changes have cer-
tainly hampered the observed estimation performance.  

The analysis revealed that tree height estimation performance varies across spe-
cies/genera (Figure 8). The observed underestimation was largest for tree species/genera with 
tall and narrow crowns, while most species with wide crown showed less bias (Figure 9). A 
notable exception was P. biglobosa, which showed a relatively large underestimation of 
tree height, despite being the tallest tree species in this comparison, with the largest tree 
crowns. Two potential explanations for these effects are (1) crown shape bias, caused by 
varying distribution of canopy objects within the topmost pixel and most prominent for 
trees with narrow canopies, and (2) vegetation bias from the DTM, most prominent for 
tall trees with wide canopies. In this paper, the observed systematic errors could be re-
duced with empirical models (Figure 10), but better understanding of the systematic er-
rors is key for future large-scale use of the methods presented in this paper. 

In this study, we did not observe any clear dependence of tree height estimation bias 
on canopy density, moisture, and phenology. However, this is most likely due to the lim-
ited temporal extent of the TDM data and the lack of reliable, quantitative information 
about tree canopies. Structural and moisture properties of the canopy are expected to have 
a significant effect on radar penetration, but dedicated follow up studies are needed be-
fore that impact can be measured. 

5.2. Implementation Aspects and InSAR Data Considerations 
In this study, phase height was estimated from TDM spotlight data using a low-res-

olution DTM derived from the same data, using a large averaging window. This approach 
was selected to reduce vegetation bias in the reference height model; it provided mean-
ingful results thanks to the low canopy cover (~15%) of parklands and relatively flat to-
pography. However, some vegetation bias could still be observed, especially for areas 
with tall trees with wide canopies (see Section 5.1), and the effect of topographic undula-
tions was not studied at all. Future work should focus on improving the DTM estimation 
methodology used in this paper and/or synergy with topographic data provided by the 
current GEDI and future BIOMASS missions [39,62]. 

This study assessed the potential of TDM for tree height estimation, and some oper-
ational aspects were not addressed. This includes the delineation of trees in TDM data, 
which in this paper it was done using in situ measured position and crown diameter. Us-
ing remotely sensed estimates of tree position and crown diameter, e.g., from high reso-
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lution optical satellite data rather than in situ data is expected to generate additional un-
certainties in the estimation, but it is outside the scope of this study. Furthermore, this 
paper disregarded geolocation and co-registration inaccuracies, shadowing of entire trees 
(e.g., small tree located underneath a larger tree), errors in in situ measurements, and nu-
merical errors introduced during InSAR processing and modelling. 

The proposed model-based approach to InSAR processing compensates partly for 
the side-looking geometry of SAR and provides an improvement in both tree positioning 
and tree height estimation performance, as compared with only using phase height. How-
ever, it requires complex processing and substantial InSAR data: multi-temporal, spot-
light-mode acquisitions were used to ascertain high resolution and stable TLM inversion 
in sparsely forested areas, while the combination of ascending and descending data al-
lowed height estimation in areas shadowed from one of the directions. 

Depending on the application, phase height may be a sufficient proxy for tree height, 
in particular if adequate training data are available and if most trees are of similar shape, 
size, and structure, so that a constant ground range offset correction may be applied. How-
ever, phase height is affected by ground scattering to a larger degree than mean canopy 
height, which can introduce bias effects related to both ground properties and canopy 
cover. These, in turn, can lead to unexpected results in the data, like the negative phase 
height values observed in very sparsely areas in boreal forests [29]. The negative phase 
height values observed in Figure 7b are likely due to the combination of height calibration 
uncertainties and the aforementioned ground scattering effects. 

Future work should address tree height estimation with the stripmap-mode TDM 
data used to create the global DEM [25]. These data are more abundant, and they provide 
a substantial advantage in terms of spatial coverage (typically 30 km × 50 km, as opposed 
to 10 km × 5 km for the spotlight-mode data used in this paper), albeit at the cost of azi-
muth resolution (typically 3.3 m, compared with 1.1 m for the spotlight-mode data). 

Note that in this study, the aspect of polarimetry was ignored because only HH-po-
larised data were available. However, polarimetric data may provide significant addi-
tional information in parklands: the vertically oriented trunks are expected to be more 
exposed in these sparsely forested and relatively dry areas, thus potentially causing more 
polarimetric diversity at X-band than in more densely forested areas. This prospect should 
be addressed in follow-up studies. 

6. Conclusions 
This study investigated the potential of using single-polarised TanDEM-X spotlight-

mode data with 1.1 m azimuth resolution for mapping tree height and position of trees of 
multiple species in a sparse canopy cover (~15%) parkland environment in Burkina Faso. 
A new, model-based InSAR processing approach was developed for this study, providing 
a high spatial resolution (~3 m) mean canopy elevation map for a 4200 hectare test area. 
These data will be used in an ongoing study focussing on the effect of trees on agriculture 
in parkland environments. 

Tree height was estimated with a standard error of 2.8 m (or 31% of the average tree 
height of 9.0 m), when evaluated against in situ data from 915 trees which were from 15 
species/genera and using an empirical model. Systematic variations were studied across 
species/genera and explained with two effects: differences in crown shape and vegetation 
bias from the DTM. Further improvement in tree height estimation was obtained by com-
bining TanDEM-X data with in situ data on crown diameter, diameter at breast height, 
and/or species, which significantly reduced the observed biases and promised synergies 
with other sensors (e.g., optical data with higher spatial resolution in the future and aug-
mented bands) and/or long-term monitoring of well-known test sites with selected in situ 
measurements. 

To fully explore the potential of the existing TanDEM-X data, future work should 
focus on adapting the methodology to polarimetric and/or stripmap-mode datasets. Time 



Remote Sens. 2021, 13, 2747 24 of 26 
 

 

series spanning different seasons should provide important insights into the effect of phe-
nology and moisture changes in trees. Future work should also consider synergies with 
other remote sensing data for tree crown delineation and more accurate removal of topo-
graphic effects. 

Supplementary Materials: The full results, including scatterplots and tables with performance met-
rics, for the 760 models studied in Section 4.5 are available online at www.mdpi.com/arti-
cle/10.3390/rs13142747/s1.  
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