
CHALMERS UNIVERSITY OF TECHNOLOGY
SE–412 96 Gothenburg, Sweden
Telephone: +46 (0)31 772 10 00
www.chalmers.se

CHALMERS UNIVERSITY OF TECHNOLOGY
SE–412 96 Gothenburg, Sweden
Telephone: +46 (0)31 772 10 00
www.chalmers.se

CHALMERS UNIVERSITY OF TECHNOLOGY
SE–412 96 Gothenburg, Sweden
Telephone: +46 (0)31 772 10 00
www.chalmers.se

Modelling and Retrieval of 
Forest Parameters from 
Synthetic Aperture Radar Data

MACIEJ JERZY SOJA

Department of Earth and Space Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2014

M
A

C
IE

J JE
R

Z
Y

 S
O

JA
     M

odelling and R
etrieval of Forest P

aram
eters from

 S
ynthetic A

perture R
adar D

ata 
 

2014





Thesis for the Degree of Doctor of Philosophy

Modelling and Retrieval of Forest
Parameters from Synthetic Aperture

Radar Data

Maciej Jerzy Soja

Department of Earth and Space Sciences
Chalmers University of Technology

Gothenburg, Sweden 2014



Modelling and Retrieval of Forest Parameters from Synthetic Aperture
Radar Data
Maciej Jerzy Soja
ISBN 978-91-7597-076-9

c© Maciej Jerzy Soja, 2014.

Doktorsavhandlingar vid Chalmers Tekniska Högskola
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Modelling and Retrieval of Forest Parameters from Synthetic Aperture
Radar Data
Maciej Jerzy Soja
Department of Earth and Space Sciences
Chalmers University of Technology

Abstract: Frequent, high-resolution mapping of national and global forest resources
is needed for improved climate modelling, degradation and deforestation detection,
natural disaster management, as well as commercial forestry. Synthetic aperture radar
(SAR) is an active radio- or microwave-frequency imaging sensor, which can be opti-
mised to fit specific needs through the choice of the centre frequency. In particular,
P-band SAR, with wavelengths around 70 cm, is a promising tool for biomass mapping
due to the high sensitivity to tree trunks, whereas X-band SAR, with wavelengths
around 3 cm and larger available bandwidths, is a promising tool for high-resolution
mapping of forest canopies.

Papers A and B summarise the results obtained within the feasibility study for
the European satellite BIOMASS, which is planned to become the first spaceborne
P-band SAR system. In Paper A, a forward model relating relevant forest and system
parameters to SAR observables is presented and evaluated. In Paper B, a new model
for biomass estimation is proposed, in which the significant influence of topographic
and moisture variations is treated using empirical corrections. The new model can be
used with the same model parameters in two boreal test sites in Sweden, separated
by 720 km, with a root-mean-square error (RMSE) of 22–33% of the mean biomass.

In Papers C, D, and E, X-band SAR data acquired with the twin-satellite, single-
pass interferometric system TanDEM-X are studied. Using the principles of across-
track interferometry, the position of the scattering centre is estimated from the phase
difference between two SAR images. With a high-resolution digital terrain model, the
interferometric data are ground-corrected, and the elevation of the scattering centre
above ground is determined. In Paper C, boreal forest biomass is estimated for one
test site in Sweden from ground-corrected TanDEM-X data using three models with
tree canopies represented by a random volume, but with different assumptions of the
ground component. The best results, with an averaged RMSE of 16%, are obtained
with a model accounting for canopy gaps. Based on this observation, a two-level
model (TLM) is introduced, in which forest is modelled as two discrete scattering
levels: ground and vegetation, the latter with gaps. In Paper D, it is shown that
TLM inversion of single-polarised, ground-corrected TanDEM-X data can provide
forest height and canopy density estimates, with RMSE values below 10% for a bo-
real test site in Sweden. In Paper E, biomass is estimated from the inverted TLM
parameters, with an RMSE in the interval 12–19% for eighteen acquisitions from two
boreal test sites in Sweden.

Keywords: synthetic aperture radar (SAR), forestry, above-ground biomass, for-
est height, canopy density, P-band, X-band, BIOMASS, TanDEM-X
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Preface & Acknowledgements

The story of Rapa Nui, or the Easter Island, is probably as interesting as it is tragic.
Once an idyllic island in the Pacific, unknown to humanity and almost entirely covered
by a palm forest inhabited by several endemic bird species, the arrival of the first
Polynesian settlers around 1200 AD1 drastically changed its landscape. Trees were
felled, to be used as fuel, construction material for shelters and boats, and to give
land for agriculture. The population of the island grew rapidly, perhaps even beyond
ten thousand inhabitants. 887 monolithic statues, called moai and weighing up to 90
tonnes each, were raised. Soon, the lack of forests caused soil erosion and the leaching
of agricultural fields, and almost all animals disappeared from the island. The lack
of wood made it impossible to build boats for fishing or for fleeing. Hunger struck
the islanders; the misery drew them to wars, and possibly also cannibalism2. By the
arrival of James Cook in 1774, the population of the now barren island was below a
thousand people, surrounded by almost equally many gigantic stone sculptures raised
by their ancestors.

Although the understanding of our ecosystems has increased significantly since the
arrival of the first Polynesians on Rapa Nui, deforestation and degradation of forests
are still a clear and present danger to the entire global ecosystem. Moreover, due
to the vastness and diversity of the global forests, many forests remain unexplored,
making it difficult to study the terrestrial ecosystems.

This doctoral thesis is focussed on synthetic aperture radar (SAR) remote sensing
of forests. SAR is a promising tool for frequent, global, high-resolution mapping of
forest resources, and it can be used both to improve the knowledge of the global forest

1T. L. Hunt and C. P. Lipo, “Late colonization of Easter Island,” Science, vol. 311, no. 5767,
pp. 1603–1606, 2006

2P. Rainbird, “A message for our future? The Rapa Nui (Easter Island) ecodisaster and Pacific
island environments,” World Archaeology, vol. 33, no. 3, pp. 436–451, 2002
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resources and to enforce international anti-deforestation agreements. It is my goal for
this thesis to bring new knowledge to the field of SAR remote sensing of forests and,
in the long run, help to better understand and protect our precious forests.
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List of Abbreviations

ALS airborne lidar scanning
ASI Italian Space Agency

(Italian: Agenzia Spaziale Italiana)
ATI along-track interferometry
BEES BIOMASS End-to-End Simulator
CARABAS Coherent All RAdio BAnd Sensing
CAST Chinese Academy of Science and Technology
CDTI Centre for the Development of Industrial Technology

(Spanish: Centro para el Desarrollo Tecnologico Industrial)
CONAE National Commision for Space Activities

(Spanish: COmisión Nacional de Actividades Espaciales)
COSMO-SkyMed COnstellation of Small satellites for the Mediterranean basin Ob-

servation
CSA Canadian Space Agency
dbh diameter at breast height
DCM digital canopy model
DEM digital elevation model
DLR German Aerospace Center

(German: Deutsches Zentrum für Luft- und Raumfahrt)
DSM digital surface model
DTM digital terrain model
EM electromagnetic
ERS European Remote Sensing satellite
ESA European Space Agency
E-SAR Experimental-SAR
FM forward model
FOI Swedish Defense Research Agency

(Swedish: Totalförsvarets Forskningsinstitut)
GOM geometrical optics model
HH horizontal (receive), horizontal (transmit)
HOA height-of-ambiguity
HV horizontal (receive), vertical (transmit)
IEEE Institute of Electrical and Electronics Engineers
InSAR interferometric SAR
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ISRO Indian Space Research Organisation
ITU International Telecommunication Union
IWCM interferometric water cloud model
JAXA Japan Aerospace Exploration Agency
lidar light detection and ranging
NASA National Aeronautics and Space Administration
PD penetration depth
pdf probability distribution function
PolInSAR polarimetric-interferometric SAR
PolSAR polarimetric SAR
radar radio detection and ranging
RCS radar cross section
RISAT Radar Imaging Satellite
RMSD root-mean-square difference
RMSE root-mean-square error
RVoG random volume over ground
SAR synthetic aperture radar
SLU Swedish University of Agricultural Sciences

(Swedish: Sveriges lantbruksuniversitet)
SMHI Swedish Meteorological and Hydrological Institute

(Swedish: Sveriges Meteorologiska och Hydrologiska Institut)
SNR signal-to-noise ratio
SPM small perturbation model
SRTM Shuttle Radar Tomography Mission
TanDEM-X TerraSAR-X Add-oN for Digital Elevation Measurements
TBM TLM biomass model
TDM TanDEM-X (interferometer system)
TDX TanDEM-X (satellite)
TLM two-level model
TOPS terrain observation by progressive scans
TSX TerraSAR-X (satellite)
UHF ultra high frequency
VH vertical (receive), horizontal (transmit)
VHF very high frequency
VV vertical (receive), vertical (transmit)
XTI across-track interferometry



Chapter 1

Forests

1.1 Multiple Roles of Forests

Forests play a vital role in the terrestrial ecosystems. Through the process of photo-
synthesis, trees and plants bind CO2 from the atmosphere, part of which is trans-
formed into carbon stock. Forests provide shelter to countless animal and vegetation
species, housing around 80% of the terrestrial biodiversity [1]. They also take part in
the water cycle, prevent soil from erosion, and clean water and air from pollutants.
At the same time, forests are one of our greatest natural resources. Timber is used as
a construction material, for paper production, and as a fuel. Animals and vegetation
provide food. Also, forests have great recreational values.

For a long time, the global effects of human exploitation of forests were negligible
due to the relatively small population and ineffective harvesting methods. However,
during the last few centuries, the rapid growth of the human population caused an
increased demand on forest products, which together with the excessive use of fossil
fuels started to more significantly affect the global environment. In the second half
of the 20th century, the signs of human influence on the global ecosystem could
be observed, for example in the form of acid rains, ozone depletion, and probably
also global warming. Although the public awareness of the environmental issues has
increased during the last few decades and the first measures have been taken, there
is still much to be learnt, and a lot of research is focussed on Earth system science

5



6 Forests

and climate change.
One of the greatest concerns is the influence of deforestation on global CO2 emis-

sions. Some sources state, that as much as 20% of the global CO2 emissions come from
deforestation [2], but the exact numbers are unknown. One of the largest uncertain-
ties in the current carbon cycle models is introduced by the inaccurate estimates of
the terrestrial carbon stocks and fluxes, mainly associated with forests. The most rel-
evant, measurable quantity directly related to the carbon distribution in the biosphere
is biomass, which is the total dry mass of all organic tissue. Since roughly 50% of
biomass is carbon, and forests account for around 80% of the terrestrial above-ground
biomass [3], frequent and global mapping of forest biomass is needed for improved
carbon cycle modelling and climate change prediction. High-resolution mapping of
biomass and other forest parameters, e.g., forest height and canopy density, will also
aid the detection of deforestation and forest degradation, improve natural disaster
handling, and enable efficient and sustainable management in commercial forestry.

1.2 Synthetic Aperture Radar in Forestry

Forests cover more than 31% of the total land surface of the Earth [1], and spaceborne
remote sensing is the only feasible method for frequent and global mapping of forests
[3]. There are several different spaceborne remote sensing techniques which can be
used for forest mapping. Optical methods have long been used for this task. However,
these methods are sensitive to atmospheric conditions, which is especially problematic
for the high-biomass tropical rainforests around the equator, where the cloud cover
is the most persistent [3]. Airborne lidar scanning (ALS) is currently considered the
most accurate remote sensing method for forest mapping [4]. However, spaceborne
application of this technique is difficult, due to yet unresolved resolution, coverage,
and technology limitations [3].

Synthetic aperture radar (SAR) does not suffer from the same disadvantages as
the optical and lidar sensors. As an active radio- or microwave-frequency sensor,
it provides its own illumination and it is generally less sensitive to clouds than the
optical methods. Thanks to the synthetic aperture technique, the image resolution
of a spaceborne SAR system can be of the order of metres. SAR is one of the
most promising tools for forest remote sensing and many past and ongoing studies
are dedicated to forest parameter estimation from SAR data [5]. A comprehensible
introduction to SAR can be found in [6].

As the electromagnetic waves scatter more strongly from objects of sizes compa-
rable to, or larger than the wavelength, SAR systems can be optimised to fit specific
needs through the choice of the centre frequency [7], and they are commonly classified
by the used frequency band. Two frequency bands often used for spaceborne SAR
imaging of forests are the P- and X-bands. At P-band, the wavelength is around 70
centimetres and the strongest scatterers are large branches and tree trunks, which
also contain most of the biomass. This causes the scattering centre to be located in
the lower part of the canopy. At X-band, the wavelength is around 3 centimetres and
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scattering occurs even from the smaller branches, leaves, and needles in tree canopies.
Therefore, the penetration capabilities are significantly lower than at P-band, and the
scattering centre is located closer to the canopy top.

1.2.1 P-band

Many studies of VHF-band (30–300 MHz) data acquired with the Swedish SAR sys-
tems CARABAS-I and -II (20–90 MHz) have shown the excellent potential of VHF-
band SAR for stem volume mapping [8–22], and, since stem volume is highly cor-
related with biomass, these conclusions also apply to biomass mapping. However,
VHF-band SAR is not available for spaceborne use, primarily due to the large iono-
spheric distortions and lack of suitable frequency allocations [23].

A somewhat higher frequency band is the P-band (typically 420–450 MHz), for
which numerous studies have shown good correlation between the backscattered sig-
nal strength and biomass over a wide biomass range [24–40]. It has also been shown
that the temporal stability is high at P-band [41–43], making it possible to perform
repeat-pass interferometry and tomography with a single satellite [41, 44–48]. This
is an important result, as the interferometric and tomographic data may enable the
estimation of forest height and the horizontal and vertical forest structure, which
may both improve biomass estimation and provide other important forest parame-
ters. Moreover, spaceborne signal transmission at P-band is since 2003 allowed for
secondary use within a 6-MHz sub-band with a centre frequency of 435 MHz, and the
ionospheric disturbances have been shown to be manageable [3, 49,50].

In 2013, the European Space Agency (ESA) selected BIOMASS for the 7th Earth
Explorer mission [51]. BIOMASS will be the first spaceborne P-band SAR system,
designed to provide global biomass, biomass change, and forest height maps. The
launch of BIOMASS is currently scheduled for 2020.

To be able to assess the error budget of the future BIOMASS mission, an end-
to-end simulator has been implemented [52]. In the simulator, the processing chain
of the satellite is modelled, including explicit error sources. Retrieval algorithms are
applied to the modelled SAR data, and biomass estimation errors are studied against
system parameters. An essential part of the entire simulator is the forward model,
which generates the raw reflectivity data.

w In Paper A, a polarimetric-interferometric forward model used within the BIO-
MASS end-to-end simulator (BEES) is developed and evaluated for SAR image
generation in boreal forest. The model predicts the extended covariance matrix
from relevant forest and system parameters. It is a hybrid model, in which the po-
larimetric matrix is modelled with empirical relations, whereas the interferometric
matrix is modelled using a theoretical model.

One of the difficulties at P-band is the significant influence of topographic and
moisture variations on the backscattered signal. There is a need for a biomass retrieval
model which accounts for the influence of these effects, and which can be used on large



8 Forests

scales without requiring excessive training data. In the past studies, the proposed
models have often been developed and evaluated using small amounts of experimental
data, usually limited to acquisitions made in similar conditions over one single test
site.

w In Paper B, a new biomass retrieval model is proposed. The model features em-
pirical correction terms, which compensate for the influence of topographic and
moisture variations. The model is compared to five other models, and evaluated
using airborne SAR data acquired in different seasons and at different flight head-
ings over two boreal test sites in Sweden separated by 720 km. It is concluded
that the proposed model performs significantly better than the other models, and
it can be successfully used in both test sites with the same model parameters.

1.2.2 X-band

Currently, the highest frequency allocations used for spaceborne SAR imaging of
the Earth are located within the X-band (8–12 GHz). As mentioned earlier, the
scattering centre is located in the upper part of the canopy, and the principles of
SAR interferometry (InSAR) can be used to map the canopy height from small phase
differences between two SAR images acquired at slightly different incidence angles
[53,54].

The TanDEM-X system, developed and operated by the German Aerospace Center
(DLR), is an X-band SAR interferometer consisting of two almost identical satellites
in a tight tandem formation [55]. Its primary goal is to provide the first global, high-
resolution digital elevation model (DEM), which will replace the older DEM produced
from the data acquired in February 2000 during the Shuttle Radar Topography Mis-
sion (SRTM) [56]. With the tight tandem formation, the temporal decorrelation is
negligible for most land surfaces [55], and precise DEM estimation can be done even
for the dynamic tree canopies.

One of the first models developed for forest parameter estimation from InSAR
data is the interferometric water cloud model (IWCM), originally designed for stem
volume estimation from multi-temporal, repeat-pass InSAR data acquired with the C-
band systems ERS-1/2 [57,58]. In the IWCM, forest canopy is modelled as a random
volume with canopy gaps. To account for the temporal changes occurring between
the two interferometric acquisitions, temporal decorrelation is modelled, separately
for the ground and volume contributions. Model agreement with observations is
achieved through the inclusion of empirical relations between stem volume and forest
height, and between stem volume and backscatter intensity.

In the traditional use of the IWCM with single-polarised, single-baseline data,
the number of model parameters is larger than the number of available observables.
Therefore, model parameters are treated as constants for each acquisition, and esti-
mated from training data. Using multi-temporal data, the influence of the acquisition
geometry and environmental variables on model parameters can be studied, and bio-
mass estimation algorithms can be developed.
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w In Paper C, biomass is estimated from multi-temporal TanDEM-X acquisitions
using the IWCM and two simpler models, one neglecting canopy gaps and one
neglecting both canopy gaps and ground contribution. Model training and val-
idation are conducted on two separate data sets. It is concluded that the most
accurate biomass prediction can be achieved with the IWCM, i.e., when both
canopy gaps and the ground contribution are modelled, and for InSAR data with
large interferometric baselines.

The acquisition of training data is generally laborious and expensive, and, from
the operational point of view, it is beneficial to decrease the requirements on field
inventories. The random volume over ground (RVoG) model can be seen as a simpli-
fied version of the IWCM, with neglected canopy gaps and no temporal decorrelation
modelling [59,60]. Direct inversion of the RVoG model has been shown useful for the
estimation of forest height and ground topography from interferometric and fully po-
larimetric, L- and P-band SAR data, without the need for model training [45,60,61].
For the standard, single-polarised TanDEM-X image pairs acquired within the global
mapping campaign, direct inversion of the RVoG model requires further simplifica-
tions, to balance the number of parameters with the number of observables [62,63].

By using an external, high-resolution digital terrain model (DTM), the number of
model parameters can be reduced. With the general stability of the ground surface
in forested areas, the increasing availability of DTMs acquired within national lidar
scanning campaigns, as well as the future P- and L-band (1–2 GHz) InSAR missions
(BIOMASS, and possibly also SAOCOM-CS [64] and TanDEM-L [65]), the availabil-
ity of high-resolution DTMs will increase in time, making this approach useful from
an operational point of view.

At X-band, canopy openings are often large in comparison to the wavelength,
and the effective attenuation in the canopies is significant. It is therefore motivated
to allow penetration to occur only through canopy gaps. This results in a two-level
model, in which forest is represented by two discrete scattering levels, with their rel-
ative contributions to the total backscattered field determined by the canopy closure.
With an external DTM, direct inversion of this two-level model is feasible even for
the single-polarised case, and estimates of both forest height and canopy density may
be obtained. This may also lead to improved biomass estimation performance.

w In Paper D, it is observed that the ground-level contribution is significant in boreal
forests at X-band. Based on that observation, an interferometric two-level model
(TLM) is introduced, in which penetration through forest canopy can occur only
through canopy gaps. The model has a simple form and can be inverted if a high-
resolution DTM is available, without the need for multiple SAR acquisitions. It
is shown that TLM inversion provides accurate estimates of both forest height
and canopy density.

w In Paper E, estimates of forest height and canopy density obtained from the TLM
inversion described in Paper D are used as biomass predictors. The new model
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is evaluated on experimental data from two boreal test sites in Sweden. It is
concluded that the model performance is excellent within each test site (in fact,
close to that achievable with ALS data). However, similarly to the case of ALS-
based mapping, the same model parameters cannot be used in both test sites,
due to the significant differences in the structure of forest canopies in the two test
sites.

1.3 Thesis Scope and Structure

The main scope of this thesis is to develop methods for forest parameter estimation
from SAR. At P-band, focus is put on the influence of topographic and moisture vari-
ations on biomass retrieval from SAR intensity data, in view of the future BIOMASS
mission. At X-band, focus is put on the influence of the canopy gaps on scattering
and the potential of X-band InSAR for large-scale mapping of forest height, canopy
density, and biomass, for example with the existing global TanDEM-X data.

This thesis consists of two main parts: Part I, in which the motivation for this
thesis has been given in this chapter, the basics of SAR are presented in the next
chapter (Chapter 2), scattering from forests is studied in Chapter 3, the appended
papers are summarised in Chapter 4, and some final conclusions and future prospects
are presented in Chapter 5, and Part II, containing the appended papers, which are
the main scientific outcome of this thesis.



Chapter 2

Synthetic Aperture Radar

In this chapter, synthetic aperture radar is introduced. First, the principles of the
basic, one-dimensional radar measurements are presented. Thereafter, a second di-
mension is added, and high-resolution radar imaging is introduced. Lastly, more
advanced techniques, expanding radar imaging capabilities beyond two dimensions,
are presented.

2.1 1D: Radar Basics

Radar is an active remote sensing technique in which electromagnetic (EM) signals are
transmitted, and the reflected echoes are detected, processed, and analysed [67–69].
The principles of radar are similar to the principles of echolocation, which is an ul-
trasonic navigation technique used by bats and toothed whales. Since radar is an
active system, no external illumination is needed. Also, the terrestrial atmosphere is
almost transparent to EM waves with frequencies up to approximately 10 GHz, mean-
ing that radar systems can see through clouds [68, 70, 71]. Note, however, that the
influence of the ionosphere increases with decreasing frequency, thus effectively reduc-
ing the potential usefulness of frequencies below a few hundred MHz for spaceborne
radar [3, 71].

Although the development of radar-like systems started already in the beginning
of the 20th century, it was first in 1940 that the term “radar” was introduced by

11
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Figure 2.1: Radar frequency bands according to the IEEE and ITU standards. Log-
arithmic scales are used for frequency f and wavelength λ. Commonly, P-band is
defined as the interval 420–450 MHz, but the broader interval 216–450 MHz can also
be encountered in the literature. Frequency bands used by some selected SAR sys-
tems are also shown. CARABAS-II was an airborne system from the Swedish Defence
Research Agency (FOI) [66]. The European BIOMASS satellite is planned to be the
first P-band SAR in space, whereas the Japanese ALOS-2 PALSAR-2 (PS-2), Chinese
HJ-1C, European Sentinel-1 (S-1), and German TerraSAR-X (TS-X) are examples of
current spaceborne L-, S-, C-, and X-band SAR systems, respectively, see Section 2.4.

Transmission unit

Reception unit

Duplexer

Signal processing unit

ObjectAntenna

Figure 2.2: Typical setup for a monostatic radar system.

the US Navy, as an abbreviation for “radio detection and ranging” [72, 73]. Mod-
ern radar systems are capable of not only detection and ranging, but also velocity
measurements, shape and size determination of objects, angular measurements, and
multi-dimensional mapping, and their applications include parking assistance in cars,
traffic speed monitoring, airport surveillance, rain rate and wind mapping for weather
forecasting, aircraft guidance and detection, planetary mapping from satellites, and
space object monitoring from the ground [67,68].

Since the scattering properties of objects are dependent on the frequency of the
transmitted EM waves, the choice of the centre frequency determines the area of ap-
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plication of a radar system. To simplify the classification of radar systems, frequency
bands have been introduced [67]. There are two main standards, one defined by the
Institute of Electrical and Electronics Engineers (IEEE) and one by the International
Telecommunication Union (ITU), and both nomenclatures are summarised in Fig-
ure 2.1. Although still used by the radar community, the P-band is an old band
designation and it has been replaced by the UHF-band. P-band is commonly defined
as the interval 420–450 MHz, although the broader interval 216–450 MHz can also be
encountered in the literature [74,75].

A radar system in which both transmission and reception are done from the same
position is called monostatic. In case of multiple positions, the system is called
multistatic (or bistatic in the case of two positions). The typical setup for a monostatic
radar system is schematically depicted in Figure 2.2. In the transmission unit, an EM
signal with the desired waveform and power is generated. The signal is then directed
towards the antenna via a duplexer, which often is a switching device, alternating
the functions of the radar unit between transmission and reception. The antenna
transmits a wave into a medium (usually air), the wave is scattered from an object,
and an echo is registered back at the antenna. The received signal passes again
through the duplexer, which now guides it towards the reception unit. In the reception
unit, the received signal is processed, sampled, and transmitted to a digital signal
processing unit.

2.1.1 Range Measurements

The distance between the target and the antenna is called range and it can be esti-
mated from the time delay between the signal transmission and the reception of the
echo. If this time delay is denoted T , then the corresponding range is [76]:

R =
cT

2
, (2.1)

where a factor of 2 accounts for the two-way propagation and c is the propagation
velocity of the EM waves in the medium. In most radar applications, the latter is air
and c = c0 is often assumed, where c0 is the speed of light in vacuum.

In the simplest radar systems, bursts of monochromatic EM waves are transmitted,
and the best achievable range resolution is proportional to the pulse length [68]:

δR =
cτ

2
. (2.2)

Thus, fine resolution can be achieved with short pulses, which decreases the signal-
to-noise ratio (SNR) and aggravates signal detection. To avoid this problem, most
modern radar systems use coded pulses with bandwidth B. For such systems, the
best achievable range resolution is [68]:

δR =
c

2B
. (2.3)

The resolution is now inversely proportional to the signal bandwidth, and both fine
resolution and high SNR can be achieved simultaneously.
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2.1.2 Power Measurements

The signal-to-noise ratio (SNR) is a useful benchmark for system quality. The SNR
is the ratio between the received signal energy and the noise power density, and for
a monostatic system using coherent integration of multiple pulses, it is determined
by [68]:

SNR =
Pavgλ

2G2tdwellσ

(4π)3R4LCBkBTs
, (2.4)

where Pavg is the average power transmitted by the system during the dwell time
(integration time) tdwell, λ is the wavelength, G is the antenna gain, R is the range, L
is a factor representing losses, CB is the filter mismatch factor (CB = 1 for a perfectly
matched filter), kB is Boltzmann’s constant, Ts is the system noise temperature, and
σ is the radar cross section (RCS). The RCS is the main observable in a radar system
and it is the effective cross-section area of the target, measured in square metres. The
RCS depends not only on the EM properties and the shape of the target, but also on
system parameters such as polarisation, angle of incidence, and frequency.

2.1.3 Velocity Measurements

If a scatterer positioned within the antenna beam is moving radially relative the
antenna, a frequency shift known as the Doppler shift will occur. The Doppler shift
fD can be computed using [68]:

fD = −2Ṙ(t)

λ
, (2.5)

where

Ṙ =
dR(t)

dt
(2.6)

is the radial velocity of the scatterer.

2.2 2D: Synthetic Aperture Radar (SAR)

Radar imaging can be achieved by sweeping the radar antenna, for example by mount-
ing it in a side-looking configuration on an airborne- or spaceborne-platform. The
target position is then determined by its range and by the along-track position of the
antenna. Commonly, these two dimensions are referred to as slant range and azimuth,
whereas the projected ground distance to the scatterer is called ground range. These
concepts are illustrated in Figure 2.3.

For a radar antenna with along-track aperture size Dx such that:

Dx � λ, (2.7)

the beamwidth is approximately [68]:

∆φ ≈ λ

Dx

, (2.8)
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Figure 2.3: Basic imaging radar geometry under flat-earth approximation.

and the azimuth resolution at range R can be approximated by [68]:

δx ≈ ∆φR ≈ λR

Dx

. (2.9)

As it can be observed in (2.9), the azimuth resolution is proportional to range and
inversely proportional to the antenna aperture. Fine azimuth resolution therefore
requires large antennas, which is both impractical and expensive, especially in the
spaceborne case, for which a moderate resolution of 100 m at X-band would require
an antenna with an aperture size of a few hundred metres.

Synthetic aperture radar (SAR) presents a solution to the aforementioned resolu-
tion problem. Through coherent signal processing, a larger, synthetic aperture can
be created using the phase information from several consecutive pulse echoes.

This technique was first proposed in the early 50’s, and further developed during
the decades that followed [67]. In 1978, the first civilian, spaceborne SAR system
called Seasat was launched by NASA [77], and in the early 90s, Europe (ESA), Russia,
Japan, and Canada followed with their own systems. In the early 2000s, additional
SAR satellites were launched by countries such as Germany, Italy, India, China, and
South Korea, and both Spain and Argentina are planning to launch their first systems
within a few years. Presently, more than 15 civilian SAR satellites are operating and
around 10 are planned to be launched within the forthcoming five years [6, 78].

2.2.1 SAR Image Formation

The main concept of SAR is to synthesise a large antenna using multiple pulse echoes
received by a smaller antenna moving along a known path [76,79]. From (2.9), a small
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Figure 2.4: Basic slant range plane geometry of SAR.

radar antenna has a large footprint. An arbitrary scatterer on the ground is then cov-
ered by several consecutive pulse echoes received at different azimuth positions, and
the relative radial velocity Ṙ of that scatterer is different at each azimuth position.
Therefore, the Doppler shift induced by the relative motion of the scatterer changes
with azimuth, creating a Doppler bandwidth. With coherent signal processing, az-
imuth resolution can be improved in the same way as range resolution is improved
using coded pulses.

Assume that a radar antenna is travelling along the x-axis on a straight path with
velocity VSAR, according to the simplified geometry shown in Figure 2.4. Let R0 be
the range of closest approach to an arbitrary scatterer, and let t be the azimuth time
such that t = t0 = 0 is the time of closest approach. The instantaneous distance
between the radar antenna and the scatterer can be computed using the Pythagorean
theorem:

R(t) =
√
R2

0 + (VSARt)2 ≈ R0

(
1 +

(VSARt)
2

2R2
0

)
, (2.10)

where a Taylor expansion has been used under the assumption that VSARt� R0.

The radial velocity of the scatterer relative the antenna can be computed from
(2.10):

Ṙ(t) =
dR(t)

dt
≈ V 2

SARt

R0

(2.11)
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and the corresponding Doppler frequency can be computed using (2.5) and (2.11):

fD(t) = −2Ṙ(t)

λ
≈ −2V 2

SARt

λR0

. (2.12)

For the simplified slant range geometry depicted in Figure 2.4, the integration
time can be computed from the antenna footprint in (2.9) and the antenna velocity
VSAR:

tdwell ≈
λR0

VSARDx

. (2.13)

The Doppler bandwidth is the difference between the maximal and minimal Doppler
frequencies. It can be computed using (2.12) and (2.13) as:

BD = fD (tdwell/2)− fD (−tdwell/2) ≈ 2VSAR

Dx

. (2.14)

Similar to the range resolution for a coded pulse with bandwidth B, see (2.3), SAR
azimuth resolution can be computed from the ratio of the antenna velocity VSAR and
the Doppler bandwidth BD [68]:

δx =
VSAR

BD

=
Dx

2
, (2.15)

which means that the azimuth resolution of a SAR image can be as good as half the
aperture length of the antenna.

The SAR mode presented above, with fixed antenna direction, is called stripmap
SAR [68, 80]. Better resolutions, but lower coverage, can be achieved by focussing
the antenna at the same point along the whole synthetic aperture, in a mode called
spotlight SAR [68, 79]. A better coverage, but lower resolution, can be achieved
by sweeping the antenna in different directions, in modes such as scan SAR and
TOPS [68,81].

Note that there is an essential difference in the way SAR images are resolved as
compared to optical imagery. Optical imagery features constant resolution angle in
both range and azimuth direction [68]. Far-range pixels are therefore resolved with
lower resolution than the near-range pixels. In SAR, pixels are resolved at constant
slant-range resolution. When projected to the ground, far-range pixels have better
resolution than near-range pixels (assuming flat earth). For spotlight SAR, azimuth
resolution is range-dependent, with better resolution achieved in near-range.

2.2.2 SAR Image Processing

The processing of the raw data acquired by a SAR platform can be summarised in
three main steps: focussing, radiometric calibration, and geocoding. In the first step,
high-resolution images are created. In the second step, pixel values are corrected so
that they carry meaningful information. In the third step, the image is re-sampled
to a cartographic projection so that it can be easily compared with other types of
geographic information.



18 Synthetic Aperture Radar

2.2.2.1 Focussing

Essentially, SAR image focussing consists of a 2D matched filtering, which removes
the range and azimuth coding. Using the fast Fourier transform, matched filtering
can be performed in the frequency domain at low computational costs. However, one
of the main difficulties in frequency-domain processing is range cell migration (RCM),
which is the movement of scatterers through resolution cells as the antenna moves
along the synthetic aperture [79, 82]. Unless compensated for, the RCM will cause
azimuth de-focussing.

In the beginning of digital SAR processing, computational costs were of great
concern and many different frequency-domain algorithms have been developed [79,82].
The algorithms differ in the way they deal with the RCM, computational costs, and
accuracy.

SAR focussing can also be achieved in the time domain, using back-projection al-
gorithms [83–86]. Time-domain algorithms are generally easier to implement and the
errors introduced by the uncertainties in the recorded flight path can often be treated
using autofocus techniques. Traditionally, the large computational costs have been a
major disadvantage of the time-domain algorithms, but the modern back-projection
algorithms, such as the fast-factorised back-projection [86], are both accurate and
computationally efficient.

2.2.2.2 Radiometric Calibration

To ensure that the focussed SAR image carries meaningful information, radiometric
calibration needs to be performed [76, 87]. In this step, the effects of the range-
dependent spreading loss, systematic variation in range due to residual effects of
antenna pattern, as well as platform roll and yaw movements (around the veloc-
ity vector and the vertical axis, respectively) are treated. Moreover, the influence
of system noise and SAR focussing also need to be considered during radiometric
calibration.

There are two main approaches to radiometric calibration: internal and exter-
nal [88, 89]. The internal calibration process is done using pre-flight and in-flight
measurements of the effects of each element of the radar system. The external cal-
ibration process uses targets with known RCS positioned within the imaged scene,
preferably at many different positions [88, 90]. The targets may be active (transmit-
ters) or passive, discrete or distributed. Commonly used passive calibration targets
are di- and trihedral corner reflectors, and dense forests.

For the imaging of distributed and dynamic targets, it is useful to average and
normalise the measured reflectivity in order to reduce the stochastic variations and
to remove the residual range dependence. Scattering coefficient sigma nought is often
used for surface imaging, as it removes range-dependence caused by the fact that the
resolution cell covers a larger ground area in near-range [91]:

σ0 =
〈σ〉
AGR

, (2.16)
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where AGR is ground area covered by the resolution cell and 〈•〉 denotes spatial
average. The area AGR can be computed from the slant range area ASR using [92,93]:

AGR =
ASR

cosψi
, (2.17)

where ψi is the angle between the image plane normal and the ground surface normal.
Scattering coefficient gamma nought is often used for the imaging of volumet-

ric scatterers, as it compensates for the residual range-dependence in σ0 caused by
different penetration depths [94,95]:

γ0 =
σ0

cos θi
, (2.18)

where θi is the local angle of incidence.

2.2.2.3 Geocoding

In this step, the focussed SAR image is interpolated from radar geometry to a carto-
graphic projection [70]. A geocoded reference height map is needed, e.g., in the form
of a DEM, a geoid model, or an ellipsoid model. From the information about the
antenna track, the range and azimuth positions of each pixel in the reference height
model can be computed, yielding a geocoding look-up table, which can be used for the
interpolation of the focussed image. The look-up table can be fine-tuned using image
processing techniques, for example by cross-correlating the focussed intensity image
with a synthetic intensity image simulated from a DEM with a simple scattering
model.

2.2.3 SAR Image Properties

There are a few effects visible in SAR imagery which need to be considered during
image analysis.

2.2.3.1 Geometric Distortions in SAR Images

SAR images are created in a side-looking geometry and they are projections of the
three-dimensional world on the two-dimensional range-azimuth plane. Therefore, geo-
metrical distortions and ambiguities are unavoidable. These distortions are especially
visible in hilly and mountainous regions, as well as urban areas.

The effect of foreshortening occurs on sloping grounds, where two points, which
may be significantly separated in the horizontal direction, appear closer on the radar
due to the slope effect, see points A and B in Figure 2.5(a).

In the case of even steeper slopes, or steep incidence angle, the effect of layover may
occur and cause the two points to appear in reversed order, as shown in Figure 2.5(b).
This means that a mountain peak may sometimes appear closer than a mountain foot.
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Figure 2.5: Three geometrical distortions visible in SAR images are here shown
schematically. Foreshortening and layover are illustrated by points A and B in (a)
and (b), respectively. Shadowing can be seen in (a) between points B’ and C’ and in
(b) between points A’ and C’.

Figure 2.6: A single-look TerraSAR-X intensity image (in dB) over the Remningstorp
test site. Speckle is the cause of the grainy texture in the image. Pixel size is 0.9 m in
slant range (horizontal direction) and 6.6 m in azimuth (vertical direction), and the
image has a size of 1500× 500 pixels.

The effect of shadowing occurs when the radar signal is blocked by a large scat-
terer, e.g., a mountain, and a dark area is visible behind it, like between points B and
C in Figure 2.5(a) and Figure 2.5(b).

2.2.3.2 Speckle and SAR Image Statistics

In SAR systems, coherent waves are used for imaging. If there are many scatterers
within a resolution cell, interference between the scattered fields may cause an effect
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Figure 2.7: Pdf for the N -look RCS estimate σ̂N (σ = 0.5).

called speckle. Speckle introduces a graininess in SAR images, which deteriorates
image quality, see Figure 2.6

Speckle statistics can be studied in the case of fully developed speckle [76, 96],
i.e., under the assumption that a resolution cell contains a large number of similar
scatterers randomly distributed in range over an extent much larger than the wave-
length. The central limit theorem implies that the real and imaginary parts I and Q
of the total backscattered field, which is the sum of the individual signals backscat-
tered by each scatterer, are independent, normally distributed random variables with
zero mean and variance σ/2 (where σ is the RCS and the factor of 2 has been chosen
to make the total variance equal to σ) [76, 96]. From this follows that the phase is
uniformly distributed between −π and π, the amplitude

√
I2 +Q2 has a Rayleigh

probability distribution, and the intensity σ̂1 = I2 + Q2 has a negative exponential
distribution with the following pdf:

p(σ̂1|σ) =

{
1
σ
e−

σ̂1
σ σ̂1 ≥ 0

0 otherwise
. (2.19)

As mentioned earlier, speckle appears in SAR imagery as a noise-like pattern, and
it is most often an unwanted nuisance, aggravating the performance of segmentation
algorithms and general image interpretation. One way to reduce speckle in intensity
images is by non-coherent averaging, i.e., multilooking. There are several ways to
achieve this: by splitting the range or Doppler spectrum into several parts, processing
each part separately, and then averaging the final images; by spatial averaging of
intensity (or amplitude, although intensity averaging has been shown superior [88]); or
by averaging of several SAR images over the same scene (assuming stable scatterers).
With non-coherent averaging, the variance in the image is decreased, but at the cost
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of resolution or additional acquisitions. Many studies have been devoted to speckle
filtering and there are many different filtering algorithms available [96].

The N -look intensity σ̂N = 1
N

∑N
i=1(I2

i +Q2
i ), where Ii and Qi are assumed to be

independent, normally distributed random variables, is a gamma distributed random
variable with the following pdf [76,96]:

p(σ̂N |σ,N) =

{
NN σ̂N−1

N

(N−1)!σN
e−

Nσ̂N
σ σ̂N ≥ 0

0 otherwise
. (2.20)

In Figure 2.7, the pdf for the N -look intensity estimate σ̂N is plotted for σ = 0.5.
It can be observed that with an increasing number of looks, the distribution becomes
more symmetric around the mean, and the variance decreases.

In Figure 2.8, the effect of multilooking is visualised in a simulated SAR im-
age. In Figure 2.8(a) and Figure 2.8(b), the real and imaginary parts are shown. The
central part of the image has slightly larger variance, but it can barely be seen. In Fig-
ure 2.8(c), the complex phase is shown, and it is completely random. In Figure 2.8(d),
the amplitude is shown, and a feature can be observed. In Figures 2.8(e)–2.8(i), the
effect of number of looks on the variance is shown. The reference RCS is shown in
Figure 2.8(j).

It can be shown that the expectation value and the variance of an N -look intensity
estimate are [76,96]:

E [σ̂N ] = σ, (2.21)

Var [σ̂N ] =
σ2

N
. (2.22)

The N -look intensity is therefore an unbiased estimate of the RCS, with variance
decreasing as 1

N
.

2.3 3D: Advanced SAR Techniques

This far, the acquisition, processing, and properties of a single SAR image have been
studied. However, if multiple acquisitions are available, additional information can be
extracted from the data. Two advanced SAR techniques that will be discussed here
are: SAR polarimetry (PolSAR) [96, 97], in which multiple polarisations are used
to differentiate between different scattering mechanisms, and SAR interferometry
(InSAR) [53], in which multiple SAR acquisitions made at slightly different incidence
angles or at different occasions are used to study the position or the movement of the
scattering phase centre.

PolSAR and InSAR form the basis for additional advanced SAR techniques: po-
larimetric SAR interferometry (PolInSAR) [59, 97], in which the principles of po-
larimetry and interferometry are combined; SAR tomography [98–100], in which a
synthetic aperture is created in the vertical direction, and vertical scattering profiles
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Figure 2.8: Simulation showing the effect of number of looks on the intensity estimate.
Figures (a)–(d) show the real and imaginary parts, phase, and amplitude of a one-
look, complex Gaussian-distributed image. Figures (e)–(i) show the N -look intensity
estimates in decibels, and Figure (j) shows the reference RCS, which is -3.0 dB for
the central part and -6.7 dB for the outer part. Grayscale intervals are, from black to
white: (a,b) [−1, 1], (c) [−π, π], (d) [0, 1], and (e–j) [−8 dB, 0 dB].

are estimated; polarimetric SAR tomography [47], in which the principles of polarime-
try and tomography are combined; and SAR holography [101,102], in which circular,
tomographic acquisitions are used to create three-dimensional images of the scene.
These techniques will not be discussed here, but a good overview can be found in [6].

2.3.1 SAR Polarimetry

One of the basic properties of an EM wave is its polarisation, that is the direction of
the electric field oscillations. In the far field from the scatterer, the oscillations of the
EM wave are perpendicular to the direction of propagation, and if two perpendicular
polarisations are used in a radar system both at transmission and reception, then
the full scattering properties of the target at that particular frequency and incidence
angle can be measured [96].

One of the most common polarisation bases used in SAR imaging is the horizontal-
vertical basis. If the transmission is done with a horizontally polarised antenna (H),
and the reception is done with a vertically polarised antenna (V), the polarisation
mode is then called VH. Similarly, HH means that horizontal polarisation is used
both at transmission and reception. If a system is capable of measuring all four
combinations (HH, HV, VV, and VH) at the same time, together with their phase
information, it is called fully polarimetric.
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ψi

θi

θ0

Figure 2.9: Basic scattering geometry. The incident wave is propagating in the
direction of k̂i, and oscillating in the plane defined by the horizontal and vertical
vectors ĥ and v̂. The ground surface normal is n̂, θ0 is the global incidence angle,
θi is the local incidence angle, and ψi is the angle between the surface normal and
image plane normal.

The electric field of an incident plane wave propagating in the direction of k̂i,
see Figure 2.9, can be expressed as a sum of two components, one in the horizontal
direction and one in the vertical direction [96]:

Ei = Ei
Hĥ + Ei

Vv̂, (2.23)

where

ĥ =
ẑ× k̂i

|ẑ× k̂i|
(2.24)

is the horizontal unit vector, perpendicular both to the vertical axis and to the direc-
tion of propagation, and

v̂ = ĥ× k̂i (2.25)

is the vertical unit vector, perpendicular both to the horizontal unit vector and the
direction of propagation. Equivalently, the incident electric field can be written as a
Jones vector [96]:

Ei =

[
Ei

H

Ei
V

]
. (2.26)

Assuming plane waves, the Jones vector for the scattered field can be computed
from the Jones vector for the incident field using [96]:

Es =
eikR

R
[S]Ei, (2.27)
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whereR is the distance between the target and the antenna, k = 2π/λ is the wavenum-
ber, and

[S] =

[
SHH SHV

SVH SVV

]
(2.28)

is the complex 2×2 scattering matrix. The scattering matrix fully describes scattering
from the target at the current frequency and incidence angle.

The relation between the RCS and the scattering matrix elements can be obtained
from the formal definition of the RCS [68]:

σ = lim
R→∞

4πR2 |Es|2
|Ei|2 , (2.29)

which for polarisation PQ can be computed using (2.27):

σPQ = 4π|SPQ|2. (2.30)

In remote sensing, most scatterers are not stable, fixed point targets, but they
are distributed, dynamic targets stochastically changing in time and space. Such
targets are best described using second order moments. The polarimetric covariance
matrix contains all possible covariance combinations of the scattering matrix elements
[96]. For a monostatic radar in a reciprocal medium, the cross-polarised terms of the
scattering matrix are equal SHV = SVH [103], and one of them is usually dropped
or they are averaged to improve the SNR. To keep the total power invariant after
dropping one element, the remaining cross-polarised term is usually scaled with

√
2

[96]. The polarimetric covariance matrix becomes:

[C] =




〈
|SHH|2

〉 √
2 〈SHHS

∗
HV〉 〈SHHS

∗
VV〉√

2 〈SHVS
∗
HH〉 2

〈
|SHV|2

〉 √
2 〈SHVS

∗
VV〉

〈SVVS
∗
HH〉

√
2 〈SVVS

∗
HV〉

〈
|SVV|2

〉


 , (2.31)

where ∗ is the complex conjugate operator.
Scattering coefficient sigma nought for polarisation mode PQ can be expressed in

terms of the diagonal elements in (2.31) using (2.30) and (2.16):

σ0
PQ =

〈σPQ〉
AGR

=
4π
〈
|SPQ|2

〉

AGR

=
4π cosψi

〈
|SPQ|2

〉

ASR

, (2.32)

where ASR and AGR are the areas of the resolution cells in slant range and ground
range planes, respectively, and ψi is the angle between the image plane normal and
ground surface normal, see Figure 2.9.

Scattering coefficient gamma nought can be computed from (2.32) using (2.18):

γ0
PQ =

4π cosψi
〈
|SPQ|2

〉

ASR cos θi
, (2.33)

where θi is the local incidence angle, see Figure 2.9.
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PolSAR data can be used to determine the dominant scattering mechanisms
present within each pixel of the imaged scene using polarimetric decomposition theo-
rems. There are several different types of decomposition theorems: coherent decompo-
sitions of the scattering matrix [S] (e.g., the Pauli decomposition [96]), eigenvector and
eigenvalue-based decompositions of the coherency matrix [T ] (e.g., the Cloude-Pottier
or H/A/α decomposition [104]), and model-based decompositions of the covariance
matrix [C] or the coherency matrix [T ] (e.g., the Freeman-Durden three-component
decomposition [105]). Polarimetric decomposition theorems are frequently used for
land use classification, see [96].

2.3.2 SAR Interferometry

In SAR interferometry, the phase difference between two SAR images acquired over
the same scene is used [53]. Two types of interferometry are common: across-track
interferometry (XTI), in which the two images are acquired at slightly different inci-
dence angles, and where the phase difference is used to estimate the scattering phase
centre elevation, and along-track interferometry (ATI), in which the two images are
acquired on different occasions, and where the phase difference is used to estimate
the change in position of the scattering centre between the acquisitions. The most
common application of the XTI technique is digital elevation model (DEM) creation,
whereas the ATI technique can be used to estimate the radial velocity of, e.g., cars,
ships, glaciers, ocean currents and waves, as well as ground surface deformations
caused by earthquakes, volcanoes, landslides, etc.

The complex correlation coefficient (sometimes also called complex coherence) is
the main interferometric observable. For two co-registered, complex SAR images S1

PQ

and S2
PQ, it is defined as [53,97]:

γ̃=γei∆φ =
E
[
S1

PQS
2∗
PQ

]
√

E
[∣∣S1

PQ

∣∣2
]

E
[∣∣S2

PQ

∣∣2
] , (2.34)

where γ = |γ̃| is called coherence and ∆φ is the interferometric phase, i.e., the phase
difference between the two images. Coherence is a real valued quantity between 0
and 1 and it is a measure of the degree of similarity between the two images. The
phase difference is related to the difference in range to the scattering centre between
the two images.

The complex correlation coefficient can be described as a product of four separate
decorrelation effects [87, 106,107]:

γ̃ = γSNRγ̃sysγ̃spγ̃temp, (2.35)

where the terms marked with the tilde sign may attain complex values.
SNR decorrelation γSNR is caused by thermal noise in the images and it can be

determined from the SNR using [6, 106]:

γSNR =
1

1 + SNR−1 , (2.36)
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where it has been assumed that both images have the same SNR value.
System decorrelation γ̃sys is introduced by system imperfections, and it includes

the effects of dynamic range, quantisation, misregistration, and ambiguities, as well as
other errors introduced during SAR and InSAR processing [6,55]. Phase offsets may
also be introduced in radar hardware and during processing. System decorrelation
can be minimised with optimised electronics, signal processing, and calibration.

Spatial decorrelation γ̃sp is due to geometric differences between the two images.
It can be re-stated as a product of three decorrelation terms [55]:

γ̃sp = γ̃rgγ̃azγ̃vol, (2.37)

where the first and second terms are decorrelation effects caused by differences in
the sampled range and Doppler frequency spectra, respectively, and the last term is
volume decorrelation. The first two decorrelation effects can be minimised through
common-band filtering of both images [53,108,109]. The last term is a very important
factor in XTI, as it carries information about the vertical distribution of the scatterers.

Temporal decorrelation γ̃temp is due to the temporal changes in the imaged scene
between the two acquisitions [87,106,110]. In the case of single-pass XTI the temporal
decorrelation is most often negligible. In the case of repeat-pass XTI, this term is
usually a nuisance that causes a loss of quality in the estimated DEM. In repeat-pass
ATI, this term carries the information about the phase difference between the two
acquisitions.

In the absence of decorrelation effects other than the volume decorrelation γ̃vol, the
phase difference ∆φ is determined by the difference in range to the scattering phase
centre, called ∆R in Figure 2.10, but it is also affected by a 2π-phase ambiguity.
The phase difference can be re-stated in terms of three phase components: the phase
introduced by the difference in range to a reference height model (∆R0), the phase
introduced by the elevation of the scattering phase centre above the reference height
model (∆h), and a 2π-phase ambiguity [68,97]:

∆φ = mk∆R + 2πn ≈ kz (∆R0 cos θ0 + ∆h) + 2πn, (2.38)

where m is equal to 2 for a monostatic system and 1 for a bistatic system, and where
the vertical wavenumber is defined as [55,111]:

kz =
mkB⊥
R sin θ0

, (2.39)

where B⊥ is the perpendicular baseline, θ0 is the average incidence angle, and R is the
average range to the scattering phase centre, as defined in Figure 2.10. The vertical
wavenumber is the number of 2π-cycles corresponding to a vertical height shift of one
metre.

In order to estimate ∆h from ∆φ, it is necessary to remove the first and last
phase components on the right hand side of (2.38). The removal of the phase caused
by the differences in range to the reference height model, i.e., the first term in the
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Figure 2.10: Simplified and exaggerated geometry for InSAR measurements. The
reference height model may be flat earth, reference ellipsoid or geoid, or a DTM.

parenthesis in (2.38), is called flattening. Depending on application, different height
models may be used: flat earth, geoid, ellipsoid, or a DTM. The removal of the 2π-
phase ambiguity is called phase unwrapping. Phase unwrapping is often a non-trivial
task and many different unwrapping algorithms have been developed [53].

Once both flattening and unwrapping have been performed, the elevation of the
scattering centre above the reference height model can be estimated from the flattened
and unwrapped phase difference ∆φ′ through a simple scaling:

∆h =
1

kz
∆φ′. (2.40)

Instead of kz, the more intuitive interferometric parameter height-of-ambiguity (HOA)
is often used. It describes the vertical height shift equivalent to a 2π-phase shift
and it is the maximal height difference that can be unambiguously resolved by an
interferometric system. HOA is defined as:

HOA =
2π

kz
=

2πR sin θ0

mkB⊥
. (2.41)
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(a) Pdf (γ = 0.7) (b) Standard deviation

Figure 2.11: Statistics for the N -look phase difference estimate ∆̂φN .

2.3.2.1 InSAR Image Processing

The processing of InSAR imagery is a multi-step process. The first step consists
of image co-registration [112, 113], in which one of the images is usually re-sampled
to the range-azimuth grid of the second image. This includes both range and az-
imuth interpolation, as well as spectral filtering of the two images so that they cover
the same 2D-frequency spectrum. This filtering procedure minimises the range and
azimuth decorrelation effects [53, 108, 109]. The next step consists of interferogram
creation, in which the first image is multiplied with the complex conjugate of the
second image. Thereafter, flattening is conducted, in which a reference phase is re-
moved (corresponding to flat earth, ellipsoid, geoid, or a DTM). Next, the flattened
interferogram is multilooked, and the phase is computed and unwrapped. Finally,
the unwrapped phase is scaled to height using a kz or HOA map computed for the
current acquisition geometry. A height calibration may be conducted here, e.g., using
ground reference points. After this step, geocoding can be performed, to obtain the
final DEM in a cartographic projection.

2.3.2.2 InSAR Image Statistics

In applications, the complex correlation coefficient is estimated using spatial averaging
of N samples [53]:

˜̂γN = γ̂Ne
i∆̂φN =

1
N

∑N
i

(
S1
i,PQS

2∗
i,PQ

)
√(

1
N

∑N
i

∣∣S1
i,PQ

∣∣2
)(

1
N

∑N
i

∣∣S2
i,PQ

∣∣2
) , (2.42)
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(a) Pdf (γ = 0.7)

(b) Expectation value (c) Standard deviation

Figure 2.12: Statistics for the N -look coherence estimate γ̂N . In (c), the dashed line
shows the approximative standard deviation obtained with the Cramér-Rao (CR)
bound.

where i is the sample index, and γ̂N and ∆̂φN are N -look coherence and phase dif-
ference estimates.

The N -look phase difference estimate ∆̂φN has the following pdf [53,96]:

p(∆̂φN |∆φ,N, γ) =

{
Γ(N+ 1

2
)(1−γ2)ND

2
√
πΓ(N)(1−D2)N+1

2
+ (1−γ2)N

2π 2F1(N, 1; 1
2
;D2) |∆̂φN | < π

0 otherwise
,

(2.43)
where Γ(•) is the gamma function, 2F1(•) is the Gauss hypergeometric function, and

D = γ cos(∆̂φN −∆φ). (2.44)
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Figure 2.13: Simulation showing the effect of number of looks on the phase differ-
ence and coherence estimates. Figures (a)–(e) and (g)–(k) show the N -look phase
difference and coherence estimates. Figure (f) shows the reference phase difference,
which is zero for the entire image. Figure (l) shows the reference coherence, which is
zero in the outer part and 0.7 in the central part. Grayscale intervals are, from black
to white: (a–f) [−π, π] and (g–l) [0, 1]. Note that the one-look coherence estimate
is always equal to unity, which, for the chosen colour scale, results in a completely
white image.

In Figure 2.11(a), the pdf for the N -look phase difference estimate ∆̂φN is plotted

for γ = 0.7 and ∆φ = 0. It can be observed that ∆̂φN is an unbiased estimate of
∆φ, with standard deviation decreasing with increasing N . In Figure 2.11(b), the
standard deviation is plotted against coherence for different numbers of looks N . The
standard deviation decreases with increasing coherence and with increasing number
of looks.

The N -look coherence estimate γ̂N has the following pdf [53]:

p(γ̂N |γ,N) =

{
2(N − 1)(1− γ2)N γ̂N(1− γ̂2

N)N−2
2F1(N,N ; 1; γ̂2

Nγ
2) 0 ≤ γ̂N ≤ 1

0 otherwise
.

(2.45)
In Figure 2.12(a), the pdf for the N -look coherence estimate γ̂N is plotted for

γ = 0.7. It can be observed that for low N , coherence is overestimated and the
standard deviation is high, but both the bias and standard deviation decrease with
increasing N . In Figure 2.12(b), the expectation value for γ̂N is plotted against
coherence for different numbers of looks N . The observed overestimation for low N
is confirmed, and the bias is coherence-dependent. In Figure 2.12(c), the standard
deviation of γ̂N is plotted against coherence for differentN , together with the standard
deviation given by the Cramér-Rao bound. As this is an approximation valid for
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unbiased estimates, it can only be used when both N and γ are high [53]:

Var[γ̂] =
(1− γ2)2

2N
. (2.46)

Simulation results for the N -look phase difference and coherence estimates are
shown in Figure 2.13. In Figures 2.13(a)–2.13(e), the N -look phase difference esti-
mates are shown. It can be observed that in the central region, the variance of the
phase difference decreases with an increasing number of looks. However, for the outer
part of the images, the phase difference is equally noisy for any number of looks. This
is due to the fact that coherence in that region is zero. The reference phase difference
is zero for the entire image, see Figure 2.13(f).

In Figure 2.13(g), the one-look coherence estimate is shown, and it is equal to
unity for the entire image. For an increasing number of looks, the coherence overes-
timation decreases, see Figures 2.13(h)–2.13(k). The reference coherence is shown in
Figure 2.13(l). In the central part, the coherence is 0.7, whereas in the outer part, it
is zero.

2.4 Past, Present, and Future SAR Systems

As mentioned earlier, more than 15 civilian, spaceborne SAR systems are currently
operational and around 10 are planned to be launched within the next five years [6,78].
Due to the major advantages of polarimetry and interferometry, most modern SAR
systems are designed to be able to provide PolSAR and/or InSAR data.

Airborne systems are used to acquire SAR data in cases when satellite SAR data
are unavailable or insufficient, e.g., in campaigns associated with preparatory studies
for new satellite systems. Airborne SAR systems have the advantage of being easy
to deploy and affordable on lower scales.

2.4.1 PolSAR Systems

Presently, two civilian, fully polarimetric SAR systems are operational: the C-band
RADARSAT-2 system from the Canadian Space Agency (CSA) [114] and the L-
band ALOS-2 PALSAR-2 system from the Japan Aerospace Exploration Agency
(JAXA) [115]. Moreover, the X-band TerraSAR-X and TanDEM-X systems from
the German Aerospace Center (DLR) are able to provide fully-polarimetric data in
the experimental mode [55], whereas the C-band RISAT-1 system from the Indian
Space Research Organisation (ISRO) is able to provide hybrid-polarimetric SAR data
(circular polarisation on transmission, linear polarisations on reception) [116].

In May 2013, ESA selected BIOMASS for the 7th Earth Explorer mission [51].
BIOMASS will feature a fully-polarimetric SAR sensor operating at the centre fre-
quency of 435 MHz with a bandwidth of 6 MHz, giving a nominal slant range resolu-
tion of 25 m [3]. It will be the first P-band SAR sensor in space, with the main goal
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to provide global biomass, forest height, and deforestation maps. Due to the low fre-
quency, repeat-pass interferometry and tomography over forests will be feasible with
BIOMASS. The launch of BIOMASS is currently scheduled for 2020.

Papers A and B appended to this thesis summarise the results obtained within
the BIOMASS feasibility study. In these papers, P-band SAR data acquired with
the airborne Experimental-SAR (E-SAR) system [117–119] from the DLR are used,
acquired within the BioSAR 2007 and 2008 campaigns [41,120]. The centre frequency
of this system was 360 MHz, which is lower than for BIOMASS, with a bandwidth of
up to 100 MHz. The E-SAR system was decommissioned in 2008 and replaced by the
F-SAR system [121].

2.4.2 InSAR Systems and Satellite Constellations

All modern SAR systems are coherent and repeat-pass interferometry can, in theory,
be conducted using any satellite system, but the temporal decorrelation often limits
the applications. Temporal decorrelation can be decreased either by using the lower
frequency bands (as in the case of the P-band SAR system BIOMASS), or by using
multiple sensors. Moreover, the use of multiple sensors in a constellation significantly
increases both the coverage and acquisition frequency, which is beneficial for large-
scale monitoring and reconnaissance purposes.

Two current SAR constellation missions capable of providing global imagery at
daily rates are: the dual-purpose (civil and military) COSMO-SkyMed system of four
X-band satellites from the Italian Space Agency (ASI) [122], and the military SAR-
Lupe system of five X-band satellites from the DLR [123]. The civilian Sentinel-1a
satellite, launched by ESA in 2014, is the first of two C-band SAR systems, which
together will be able to provide SAR imagery of the entire Europe every third day
[124]. Moreover, the S-band system HJ-1C, launched in 2012, is the first of four SAR
satellites planned for a constellation mission from the Chinese Academy of Science
and Technology (CAST) [125].

The X-band PAZ system, funded by the Spanish Center for Development of In-
dustrial Technology (CDTI) and scheduled to be launched in 2014, is planned to op-
erate in constellation with the almost identical satellites TerraSAR-X and TanDEM-
X [126, 127]. The SAOCOM-1A/B mission from the Argentine National Commis-
sion for Space Activities (CONAE) will consist of two fully-polarimetric, L-band
SAR satellites [128], planned to be launched in 2015 and 2016, respectively. The
RADARSAT Constellation Mission of three C-band satellites from the CSA is planned
to be launched in 2018, with the main task to provide daily imagery of the Canadian
lands and oceans [129].

Single-pass interferometric SAR systems have the advantage of low temporal
decorrelation, but they require multiple SAR sensors in a close formation. Currently,
spaceborne single-pass InSAR data can be acquired only with the TanDEM-X sys-
tem, consisting of the previously mentioned satellites TerraSAR-X and TanDEM-X
in a tight helix formation [55]. The main goal of the TanDEM-X mission is to acquire
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the first, fully global DEM with a spatial resolution of 12 m× 12 m and an absolute
vertical accuracy better than 10 m [130], which will replace the older DEM acquired
within the Shuttle Radar Topography Mission (SRTM) from the space shuttle En-
deavour in February 2000. Papers C, D, and E appended to this thesis are focussed
on forest parameter estimation from TanDEM-X data.

The proposed ESA SAOCOM-CS mission will feature a passive SAR sensor in a
formation flight with the SAOCOM-1B satellite [64]. Also, a TanDEM-L mission has
been proposed, consisting of two L-band satellites in a tight tandem formation and
providing fully-polarimetric, high-resolution data in a wide-swath mode [65].
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Figure 3.1: Some of the most significant scattering mechanisms in forest: direct
backscatter from (1) tree canopies, (2) tree trunks, and (3) ground surface, and
double-bounce interactions between (4) ground surface and tree canopies, as well
as between (5) ground surface and tree trunks.

Chapter 3

Microwave Scattering from Forests

When studying forests with SAR imagery, it is important to be able to separate the
influence of system parameters from the influence of geo- and biophysical forest pa-
rameters. Scattering models are important tools which can improve the understanding
of the electromagnetic interactions.

Accurate modelling of electromagnetic scattering from forests can be achieved by
means of computational electromagnetics, in which Maxwell’s equations are solved
numerically for a discretised forest model. However, the computational costs of this
approach can be enormous, especially if multiple evaluations are required, e.g., in
case when the influence of a system parameter on the scattering coefficient needs to
be examined.

In many cases, the usefulness of a simplified model is of higher priority than ex-
treme accuracy, e.g., when the model is to be used to explain the cause of a particular
effect observed in the experimental data. In such cases, simplifications can be made
by replacing complicated forest elements with simple objects, for which fast analyt-
ical solutions are available, and by reducing the number of modelled interactions.

35



36 Microwave Scattering from Forests

The accuracy of such simplified models depends primarily on two factors: if all the
most important scattering mechanisms are modelled, and how well each scattering
mechanism is modelled.

3.1 Basic Scattering Mechanisms

In some of the most common models [132–136], forest is composed of three types
of elements: ground surface, tree trunks, and tree canopies. Each of these elements
contributes both on its own and in combination with the other elements to the total
backscattered field. The most significant, low-order scattering mechanisms shown in
Figure 3.1 are:

(1) direct backscatter from tree canopies,

(2) direct backscatter from tree trunks,

(3) direct backscatter from the ground surface,

(4) double-bounce interactions between the ground surface and tree canopies,

(5) double-bounce interactions between the ground surface and tree trunks.

Higher-order mechanisms and near-field interactions can often be neglected. Due to
reciprocity, the two double-bounce interactions between the same elements, but in
reversed order (e.g., ground-trunk and trunk-ground), are equivalent and they add
up in phase, acting as one single scattering mechanism [137]. In the following, oblique
incidence angles and vertical or near-vertical tree trunks will be assumed.

3.1.1 Direct Backscatter

Direct backscatter is primarily caused by reflections from surfaces facing the radar
antenna. Therefore, most of the direct backscatter occurs in the canopy, from rough
surfaces, and from occasional slopes facing the radar antenna.

Canopies consist of more or less randomly oriented branches of different sizes,
as well as needles or leaves. Canopy backscatter is generally stronger at high fre-
quencies, when the scatterers are comparable to, or larger than the wavelength [95].
Consequently, penetration through the canopy is expected to decrease with increasing
frequency. If the scatterers in the canopy have a preferred orientation, the backscat-
tered field will show polarisation dependence.

Surface roughness is characterised in relation to the wavelength, and a surface
which is rough at high frequencies may be smooth at low frequencies [91, 138]. At
oblique incidence, backscattering from a randomly rough surface is stronger than
from a smooth surface. Many realistic surfaces, such as forest soil and bark, may be
treated as slightly rough surfaces when the wavelength is much longer than the surface
irregularities (e.g., at P-band) and very rough surfaces when the surface irregularities
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(a) Scattering geometry

(b) Backward direction (slightly rough surface at
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Figure 3.2: Scattering from a slightly rough surface (P-band) and a very rough surface
(X-band), corresponding to low- and high-frequency regimes, respectively. In all cases,
the incidence angle θi is 30◦ and only scattering in the incidence plane is studied. Non-
coherent rough surface scattering has been modelled using the geometrical optics
model (GOM) in the high-frequency regime and the small perturbation model (SPM)
in the low-frequency regime, using the expressions found in [103]. Coherent scattering
is only significant for the slightly rough surface in the forward direction, where it has
been modelled using the expression presented in [91] and assuming a circular surface
with a radius of 100 m. Parameters s and L are the standard deviation of the vertical
variations and the correlation length of the rough surface, and together with the
relative dielectric constant εr, their values have been chosen based on [131].
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Figure 3.3: Scattering from a smooth vertical cylinder modelled using the infinite
cylinder approximation [103]. In all cases, the incidence angle θi is 30◦ and only
scattering in the incidence plane is studied. The cylinder has a length of 20 m, radius
of 13 cm, and the relative dielectric constant εr chosen according to [17]. Note the
significant difference in the scales of the x-axes.
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are comparable to, or larger than the wavelength (e.g., at X-band). Therefore, direct
backscatter from such surfaces is expected to be stronger at high frequencies.

In Figure 3.2(b) and Figure 3.2(c), rough surface scattering in the backward di-
rection is modelled at P- and X-bands using the small perturbation model (SPM)
and the geometrical optics model (GOM), respectively. The SPM is a low-frequency
approximation, valid when surface roughness is small in comparison to the wave-
length, whereas the GOM is a high-frequency approximation, valid for very rough
surfaces [103]. At P-band, with a centre frequency of 435 MHz and a wavelength
of 69 cm, the chosen roughness parameters (standard deviation of vertical variations
equal to 1.1 cm and the surface correlation length equal to 16.5 cm) correspond to
a slightly rough surface. Backscattering is thus very weak, see Figure 3.2(b). At
X-band, with a centre frequency of 9.65 GHz and a wavelength of 3.1 cm, the cho-
sen roughness parameters (standard deviation equal to 1.4 cm and correlation length
equal to 3.7 cm) correspond to a very rough surface. Backscattering is therefore much
stronger, see Figure 3.2(c). Note that roughness parameters have been chosen accord-
ing to [131], for optimal validity of the asymptotic models. The surfaces are therefore
slightly different for the two studied cases (P- and X-band).

In Figure 3.3(b) and Figure 3.3(c), scattering in the backward direction from
a smooth, vertical cylinder is modelled at both P- and X-bands using the infinite
cylinder approximation [103]. As it can be observed, the backscattering coefficient
is low in both cases. Note, however, that in more realistic scenarios, trunks are not
smooth vertical cylinders, but they attain a rougher and possibly also curved form.
Therefore, backscattering from a tree trunk will be stronger in reality.

3.1.2 Double-Bounce Interactions

Double-bounce interactions require a strong specular reflection from the ground as
well as from the trunks and/or canopies. A smooth surface will generally have a
stronger specular component than a rough surface [91, 138], and for many natural
rough surfaces, double-bounce interactions will be more common for the lower fre-
quencies. The strength of the double-bounce interactions between the ground surface
and vertical trunks will be affected by the ground slope and by the relative length of
the trunks. At lower frequencies, the trunks will be shorter relative the wavelength,
resulting in a wider forward scattering lobe [139], and the double-bounce interaction
will be less sensitive to ground slope. For a ground surface tilted in the azimuth
direction, double-bounce interaction will be present also in the cross-polarised chan-
nel [17].

In Figure 3.2(d) and Figure 3.2(e), rough surface scattering in the forward direc-
tion is modelled at P- and X-bands using the SPM (with a coherent term) and the
GOM, respectively, at an incidence angle of 30◦. For P-band and the slightly rough
surface, forward scattering is weak in all cases except when the scattering angle is
around 30◦, i.e., in the specular direction, when the coherent term becomes significant.
The width of the coherent scattering lobe depends on the size of the surface; a larger
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(a) Rough surface (b) Smooth cylinder

Figure 3.4: Simplified visualisations of rough surface scattering and reflection from a
smooth cylinder in high- and low-frequency regimes (in blue and red, respectively).

surface results in a narrower lobe and a stronger specular reflection. For X-band and
the very rough surface, forward scattering in non-specular directions is stronger than
for a slightly rough surface, whereas the coherent component is negligible.

In Figure 3.3(d) and Figure 3.3(e), scattering in the forward direction from a
smooth, vertical cylinder is modelled at both P- and X-bands using the infinite cylin-
der approximation. The forward scattering lobe is wider for P-band, although the
scattering coefficient in the specular direction is lower.

Double-bounce interactions between the ground surface and tree canopies are often
weak, due to the high penetration capabilities at low frequencies, when the specular
reflection from the ground is the strongest.

3.1.3 Dominant Mechanisms at P- and X-bands

At P-band, direct backscatter from larger branches in the canopies and ground slopes
facing the antenna, as well as the double-bounce interactions between ground and
trunks are expected to be the strongest contributions, the latter due to the strong
specular reflection from relatively smooth surfaces and wide forward scattering lobe
from the trunks, see Figure 3.4. The strength of these contributions is related to the
volume of the trunk, but it also depends on the dielectric properties of the elements,
roughness of both ground and trunk surfaces, and the ground topography. Several
models of dielectric cylinders over ground have been developed for lower frequencies
[17,140–143].

At X-band, direct backscatter is expected to be the main contribution, due to
the random orientation of the canopy scatterers, and the relatively rough trunk and
ground surfaces, see Figure 3.4. Direct backscatter from the rough trunk and ground
surfaces is expected to be strong only in the case of sparse canopies, i.e., when pen-
etration through canopy gaps is significant. In general, low sensitivity to biomass
is expected for the backscattered signal at X-band due to the strong dependence on
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Figure 3.5: A power law function relating backscatter coefficient gamma nought to
biomass is here plotted with the green, solid line, together with backscatter data from
six airborne SAR campaigns. The referenced studies can be found in [26, 28, 32, 36,
37,144]. The figure has been adapted from [38]. Note that the original data from La
Selva and Remningstorp have been corrected with +5 dB and -3 dB, respectively, to
compensate for the observed offset from the other four data sets.

surface roughness and the weak dependence on the trunk volume.
Polarisation and incidence angle dependence is expected to be stronger at P-band,

due to the stronger contribution of the ground surface and tree trunks, which are often
less randomly oriented than the canopy scatterers.

3.2 Models for Forest Scattering

Scattering models serve as a link between theory and empirical observations. There-
fore, the development of models can be approached from both ends, and two general
model types can be distinguished: empirical and theoretical.

3.2.1 Empirical Models

Empirical models are derived from observations in the experimental data. Using re-
gression analysis, functions can be fitted to the data and used to explain the observed
behaviour. As both the experimental data and model selection strategies may vary
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(a) IWCM (b) RVoG

Figure 3.6: Two vertical backscatter profiles used by the IWCM and RVoG models.

significantly between different studies, the number of empirical models available in
the literature is very large.

The power law is one of the more popular models, which can be used to explain
many phenomena observed in nature [145,146]. In SAR remote sensing of forests, this
function is often used to describe the relation between the backscattering coefficient
and biomass, especially for HV-polarised, P-band data. In [38], the following power
law function has been fitted to HV-polarised data from six airborne P-band SAR
campaigns conducted in different biomes on three different continents:

γ0
HV = aBb, (3.1)

where B is biomass in tons per hectare and a and b are model parameters. After
correction of an observed offset in γ0

HV in two of the six data sets, the same parameters
a and b can be used for all six data sets, see Figure 3.5.

3.2.2 Theoretical Models

Theoretical models are created using simple objects for which approximative analyt-
ical solutions exist (cylinders, rough surfaces, discs, needles, dipoles, etc.). There are
two main types of theoretical models: coherent and non-coherent.

Coherent models are based on wave propagation and Maxwell’s equations, and the
contributions from the different scattering mechanisms are added in phase. Common
coherent models include models based on the cylinder-over-ground approximation,
which are primarily used to model the trunk-ground interactions at lower frequencies
[17, 140, 141, 143, 147–149], as well as more complex models with more elements and
higher-order interactions [136,150–152].

Non-coherent models are based on energy propagation and radiative transfer equa-
tions. Therefore, no correlation between the fields scattered by the different elements
is assumed, and the contributions of the different scattering mechanisms are added in
terms of power. The analytical treatment of these models is generally simpler. Many
non-coherent models have been developed in the past [132,133,153–157].
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3.2.2.1 Interferometric Models

In across-track interferometry, modelling of volume decorrelation can be done from
the vertical backscattering profile σv(z) using [106,110]:

γ̃vol =

∫∞
−∞ σv(z)eikzzdz∫∞
−∞ σv(z)dz

. (3.2)

Two simple models have been frequently used since the late 90’s for forest param-
eter estimation from InSAR data. In both models, vegetation canopy is modelled as a
water cloud, as proposed in [94], and ground is modelled as an impenetrable surface.
As the scattering centres of the double-bounce interactions are located at the ground
level, the double-bounce interactions do not have to be modelled separately.

In the interferometric water cloud model (IWCM) [57,58], vegetation is modelled
as a homogeneous volume of randomly oriented scatterers located above a ground
plane and covering a certain fraction of the total area, called the area-fill factor, see
Figure 3.6(a). It has been shown in [94], that the effective attenuation of the random
volume can be described by an exponential backscatter profile function. The vertical
backscattering profile σv(z) can then be formulated as:

σv(z) = η
[
σ0

vegαe
−α(z0+h−z)Θ(z0 + h− z)Θ(z − z0)

+ σ0
grδ(z − z0)e−αh

]
+ (1− η)δ(z − z0)σ0

gr, (3.3)

where η is the area-fill factor, σ0
gr and σ0

veg are the effective ground and vegetation
backscattering coefficients, α is the extinction coefficient, z0 is the ground elevation,
h is the volume height, δ(•) is the Dirac delta function, and Θ(•) is the Heaviside
step function. By inserting (3.3) into (3.2), the total volume decorrelation can be
obtained.

The IWCM was originally developed for stem volume estimation from repeat-pass
interferometric, C-band ERS-1/2 data [57, 58], where it was fitted to coherence and
backscatter data, which were found stable in winter conditions in various forests [158–
161] (the phase information was not used due to high temporal decorrelation [162]).
Therefore, the full formulation of the IWCM also includes two temporal decorrelation
terms (one for the ground and one for the volume parts) and an allometric relation
between height and stem volume. Additionally, an empirical model relating stem
volume to backscattering coefficient and first published in [163] is also included, to
make backscatter modelling agree with the empirical observations. IWCM fitting is
usually done collectively for all data points using training data, effectively making
the model parameters into site-dependent constants.

In the random volume over ground (RVoG) model [59–61,164], the profile used in
the IWCM is simplified by neglecting the canopy gaps, see Figure 3.6(b):

σv(z) = σ0
vegαe

−α(z0+h−z)Θ(z0 + h− z)Θ(z − z0) + σ0
grδ(z − z0)e−αh. (3.4)

The traditional use of the RVoG model includes forest height and ground elevation
estimation from PolInSAR data [44,45,59–61,164,165]. Model fitting is generally done
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on a pixel-by-pixel basis, by balancing the number of observables with the number
of parameters. In recent years, the RVoG model was further developed, and the
estimation of vertical scattering profiles [99, 166] as well as temporal decorrelation
[167] from PolInSAR data were introduced.



Chapter 4

Summary of the Appended Papers

This chapter begins with a short presentation of the reference data used in the ap-
pended papers. Thereafter, the appended papers are presented, first the two P-band
papers and then the three X-band papers.

4.1 Experimental Data

Two test sites located in Sweden are used in the appended papers: Remningstorp
and Krycklan, see Figure 4.1. The distance between these test sites is approximately
720 km.

Remningstorp (58◦ 28’ N, 13◦ 38’ E) is a hemi-boreal forest site situated in southern
Sweden, approximately 150 km north-east of Gothenburg (Göteborg). The test site
is fairly flat, with ground slopes at stand level lower than 5◦ (computed from a
50 m× 50 m DTM). Remningstorp covers approximately 1200 ha of productive forest
land, and the forest consists primarily of Norway spruce (Picea abies (L.) Karst.),
Scots pine (Pinus sylvestris L.), and birch (Betula spp.). Remningstorp has been
used in the two ESA-funded campaigns BioSAR 2007 and 2010 [41,42], conducted in
support to the BIOMASS feasibility study [3].

Krycklan (64◦ 14’ N, 19◦ 46’ E) is a boreal forest site located in northern Sweden,
approximately 50 km north-west of Ume̊a. Compared to Remningstorp, Krycklan has
a more strongly undulating topography, with ground slopes on stand level reaching

45
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Figure 4.1: The two test sites used in the appended papers, Remningstorp and Kryck-
lan, separated by 720 km.

19◦ (computed from a 50 m× 50 m DTM). Krycklan covers approximately 6700 ha of
forested land, which is dominated by Norway spruce and Scots pine. Krycklan has
been used in the ESA-funded campaign BioSAR 2008 [120], conducted in support to
the BIOMASS feasibility study [3].

For each test site, several sets with reference data have been provided by the
Swedish University of Agricultural Sciences (SLU). The data can be divided in three
categories: plot-level data, stand-level data, and maps.

Stands are relatively homogenous forest regions with similar species composition,
biophysical characteristics (e.g., tree height and tree number density), and manage-
ment procedures. They can vary in size and shape, and they are the main unit used
for forest mapping and management [11]. Plots are usually smaller stand subsets of
regular shape, which are used as within-stand samples. Often, they are distributed
in a systematic grid covering the test site or a stand.
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Although the exact methodologies used during field inventories may vary between
the individual reference data sets, the general approach is similar. Commonly, the
relevant and easily accessible parameters such as stem diameter at breast height
(dbh) and tree species are sampled for all trees confined within plot borders and
fulfilling a minimum dbh criterium (dbh larger than 4 cm in Krycklan; dbh larger
than 5 cm in Remningstorp). For a subset of these trees, the more time-consuming
measurements of, e.g., tree height and age, are made. Plot- and stand-level estimates
are then computed from the sampled tree parameters, and biomass is estimated using
allometric equations, for example the Marklund or Petersson formulas [168, 169]. In
recent years, the forest management system Heureka [170] has been frequently used
for forest parameter estimation from in situ data.

Maps of forest parameters are usually derived from airborne lidar scanning (ALS)
data. In ALS, laser pulses transmitted downwards from an aircraft or a helicopter
are used to sample canopy height at high vertical and horizontal resolutions. From
the sampled pulses, different lidar-based estimates of forest parameters are obtained,
and biomass maps are created using regression analysis and plot-level reference data.

The accuracy of plot-, stand-, and map-level biomass estimates depends on many
factors: measurement error, the uncertainty in the allometric models, natural varia-
tion in the data, sampling density, etc. Moreover, correlation between error sources is
not uncommon and need to be considered. When evaluating the performance of SAR-
based biomass estimation algorithms, it is important to consider the uncertainties in
the reference data.

4.2 Paper A

In this paper, a P-band polarimetric-interferometric forward model (FM) is devel-
oped and used to model SAR imagery acquired with the airborne E-SAR system over
Remningstorp. The FM is used within the BIOMASS end-to-end simulator (BEES),
used by ESA to assess the error budget of the proposed (now selected) mission BIO-
MASS [3,52].

In accordance with the requirements from ESA, the FM predicts the extended
covariance matrix scaled to sigma nought on the diagonal from a small number of
geo- and biophysical forest and system parameters. The influence of scene moisture
and ground slopes is not modelled.

Four model scenarios have been developed for BEES, featuring two different
backscatter profiles (exponential and truncated Gaussian) for two different biomes
(tropical and boreal). However, only the boreal scenario with the exponential profile
is studied in Paper A. For a full description of the model and the different scenarios,
consult [171].

The extended covariance matrix is a matrix with all covariance combinations of
the unique elements of two scattering matrices, one for each interferometric acquisi-
tion. Assuming a monostatic system, reciprocal and reflection symmetric medium,
and identical polarimetric response at both ends of the baseline, the extended co-
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(a) Reference (HV) (b) Modelled (HV) (c) Reference (VV) (d) Modelled (VV)

Figure 4.2: In Paper A, the extended covariance matrix is modelled for P-band
from a few forest and system parameters. Here, backscatter coefficients sigma nought
modelled from biomass and incidence angle maps are compared to the reference data
acquired with the airborne E-SAR sensor. The test site is Remningstorp and the
black contours mark the area covered by the biomass map. Outside, biomass has
been set to zero.

variance matrix is a 6× 6 matrix, and it can be re-stated in terms of three basic
quantities: three real-valued backscatter coefficients sigma nought (one for each po-
larisation), three complex-valued interferometric correlation coefficients (one for each
polarisation), and one complex-valued polarimetric correlation coefficient (between
the two co-polarised channels).

Backscatter coefficients are for all polarisations modelled in decibels using a linear
function of biomass, based on (3.1), and an additive, zero-mean Gaussian noise term.
Model parameters and noise variance are estimated from the training data:

[γ0
HH]dB = −20.1 + 8.1 log10 B + N(0, 1.32), (4.1)

[γ0
HV]dB = −20.7 + 4.2 log10 B + N(0, 0.72), (4.2)

[γ0
VV]dB = −6.7 + 0.6 log10 B + N(0, 1.22), (4.3)

where B is the biomass in tons per hectare. As it can be observed, the highest



4.3. Paper B 49

sensitivity to biomass is obtained for the HH-channel, but with a larger variance.
For the HV-channel, the sensitivity is still high, and the variance is lower. For the
VV-channel, the sensitivity to biomass is very low.

Interferometric correlation coefficients are for all polarisations modelled from ca-
nopy height, ground elevation, incidence angle, and baseline information using the
RVoG model presented in (3.4). All model parameters have been chosen to be nor-
mally distributed random variables, with statistics either estimated from training data
or appropriately chosen based on the experience from earlier studies. Polarimetric
coherence is modelled as a normally distributed random variable. The polarimetric
phase difference has been found correlated with biomass and it is modelled using a
linear function with an additive, zero-mean Gaussian noise term.

The model performance is evaluated in a side-by-side comparison of the modelled
SAR images with the SAR images acquired by the E-SAR system. The same ac-
quisition as used for model training is used in this evaluation. It is concluded that
accurate modelling is achieved with the FM for the HH- and HV-polarised backscatter,
the interferometric phase differences, and the polarimetric phase difference. However,
modelling of the VV-polarised backscatter coefficient, the polarimetric coherence, and
the interferometric coherences need to be studied further, as not all structures can be
reproduced from the input data using the presented model.

In Figure 4.2, the results from backscatter modelling of the HV- and VV-channels
from biomass are shown. Good agreement with the reference E-SAR image is observed
for the HV-channel, where the correlation with biomass is high.

4.3 Paper B

In this paper, a new biomass retrieval model is presented. The model includes terms
which partially compensate for the influence of topographic and moisture variations.
The model is evaluated on E-SAR data acquired in both Remningstorp and Krycklan.
The model has been developed within the BIOMASS feasibility study and it has been
included in the proposed biomass estimation algorithm for boreal forests [3].

The model is based on the power law function shown in (3.1), together with
the backscatter ratio between the HH- and VV-channels, which has been found less
susceptible to topographic and moisture variations, due to the often similar influence
of these two effects on both co-polarised channels. A topographic correction is also
included in the model:

log10 B = a0 + a1[γ0
HV]dB + (a2 + a3θg)

[
γ0

HH

γ0
VV

]

dB

, (4.4)

where a0, a1, a2, and a3 are model parameters estimated from the training data and
θg is the ground slope.

The model is evaluated together with five other models in a set of tests using
the E-SAR data from the BioSAR 2007 and 2008 campaigns. The data have been
acquired in different test sites, at different flight headings, and in different moisture
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(a) Reference (lidar) (b) Estimated (E-SAR, Re) (c) Estimated (E-SAR, Kr)

Figure 4.3: In Paper B, biomass is estimated from P-band SAR backscatter using
a new model with topographic and moisture correction. Three biomass maps for
Remningstorp are here shown, estimated from: (a) lidar data, (b) SAR data, using
the new model with parameters estimated in Remningstorp, and (c) SAR data, using
the new model with parameters estimated in Krycklan, which is 720 km north-north-
east of Remningstorp. Regions A, B, and C mark some disagreements, which are
discussed in the text.

conditions. By using across-acquisition and across-site evaluation scenarios, it is
possible to evaluate model susceptibility to topographic and moisture variations, as
well as the potential of using the same parameter setup in different conditions.

It is concluded that the proposed model, with parameters estimated in Krycklan,
can be used to estimate biomass in Remningstorp with a root-mean-square error of
40–59 tons/ha, or 22–32% of the mean biomass, which is significantly better compared



4.4. Paper C 51

to the other models. Since the two test sites are separated by 720 km and they feature
quite different types of boreal forests, this is a very important conclusion for the future
global mission.

In Figure 4.3, biomass maps of Remningstorp, estimated using the proposed model
with two parameter sets, one for Remningstorp and one for Krycklan, and compared
to a reference biomass map estimated from lidar data. The performance is generally
good, although some disagreements with respect to the lidar-based map can be ob-
served. In region A, a significant understorey vegetation layer causes an increased
HV backscatter, without contributing significantly to the total biomass. The dis-
agreement in region B is caused both by an overestimation of biomass in the SAR
map due to a strong double-bounce effect present in the HV-channel, and by an un-
derestimation of biomass in the reference lidar data. The disagreement in region C is
caused by an unusually strong double-bounce effect occurring for a group of tall trees
surrounded by lower forest.

4.4 Paper C

In this paper, an approach based on the IWCM and developed for stem volume
retrieval from repeat-pass interferometric, C-band ERS-1/2 data is used for biomass
retrieval from single-pass interferometric, X-band TanDEM-X data, which have been
ground-corrected using a high-resolution DTM. Multi-temporal data are studied, and
the influence of both acquisition geometry and meteorological variables is assessed.

The development of an InSAR processing algorithm was an important part of the
work conducted for this paper. Due to the quasi-bistatic acquisition geometry with
one transmitting and two receiving satellites, and the helical orbit with dynamic base-
line, a dedicated InSAR processing algorithm was developed for the TanDEM-X data.
Using satellite state vectors, a geocoding look-up table was computed, and the high-
resolution DTM was interpolated to radar geometry. The raw interferograms were
then ground-corrected using the interpolated DTM and taking into consideration the
quasi-bistatic acquisition geometry and satellite displacement between transmission
and reception of the signals. A 5-metre buffer zone was added prior to plot- and
stand-level averaging. Phase estimation errors were minimised by complex averaging
of all relevant pixels within each plot/stand. Absolute phase calibration was done us-
ing ground reference points derived from a non-forest mask. Phase unwrapping was
found unnecessary due to the limited height variations in the flattened interferogram.
Conversion to height was done using a HOA map computed from the acquisition
geometry. Geocoding and height estimation accuracies were evaluated using two 5-
metre trihedral corner reflectors positioned within the Remningstorp test site. The
standard deviation of height variations was found lower than 10 cm and the horizontal
offset was found lower than 2 m.

In this study, the IWCM is compared to two other models, each being its simplified
version: the RVoG, in which canopy gaps are neglected, and a new penetration depth
(PD) model, in which both canopy gaps and ground contribution are neglected. The
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(a) Reference (lidar) (b) Estimated (TDM, IWCM)

(c) Estimated (TDM, RVoG) (d) Estimated (TDM, PD)

Figure 4.4: In Paper C, biomass is estimated using three models: IWCM, RVoG, and
a new penetration depth (PD) model. Above, the corresponding maps are compared
to a lidar-derived reference map. The test site is Remningstorp and non-forested
areas have been masked out. Note that there is one year time difference between
the TanDEM-X (TDM) and lidar acquisitions, and growth and forest management
have not been accounted for (e.g., in the cleared area slightly to the left from the
bottom right corner of the images). The original TDM data have been acquired on
2011-06-04, with a HOA of 49 m, and at an incidence angle of 41◦.

models are fitted to both intensity, coherence, and phase centre height data, and
biomass is estimated.

The new PD model is a simplification valid for dense forests, and it requires one
single parameter, the penetration depth, which is used to compensate the phase centre
height for penetration. The compensated height is then converted to biomass using
a height-to-biomass relation:

B = 0.21

(
hgc +

1

α

)2.17

, (4.5)

where the biomass B is measured in tons per hectare, hgc is the phase centre elevation
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above ground (in metres) and α is the effective extinction coefficient (in m−1).

The models are evaluated using eighteen VV-polarised TanDEM-X image pairs
acquired over Remningstorp between 2011-06-04 and 2012-08-24, at HOAs between
49 m and 358 m, incidence angles between 34◦ and 41◦, and in both ascending and
descending modes. High-resolution DTM acquired within a national lidar scanning
campaign is used as ground reference during InSAR processing. Meteorological data
provided by the Swedish Meteorological and Hydrological Institute (SMHI) are also
used in the study. The retrieval performance is assessed using 201 forest stands with
a minimum size of 1 ha, and biomass in the interval 6–267 t/ha (mean: 105 t/ha),
equally divided into two groups: one for training and one for validation. The root-
mean-square error (RMSE) for the IWCM-based retrieval is between 17% and 33%,
with the best results obtained for the low HOAs. For the RVoG and the PD models,
the stand-level RMSE values are slightly higher. Biomass is also estimated using
multi-temporal averaging from all eighteen acquisitions with a weighting factor in-
versely proportional to the square of HOA, with an RMSE of 16% and R2 = 0.93.

In Figure 4.4, biomass maps obtained with each of the three models for an image
from 2011-06-04 with a HOA of 49 m and an incidence angle of 41◦ are compared to
a reference map estimated from lidar data. Good results are obtained for all models,
except in the region that has been harvested between the lidar and SAR acquisitions.

4.5 Paper D

In this paper, the two-level model (TLM) is introduced and used for the estimation
of forest height and canopy density from single-polarised TanDEM-X acquisitions in
combination with a high-resolution DTM. With an access to the global TanDEM-X
data, the presented approach can be used for frequent, large-scale, high-resolution
mapping of forest height and canopy density in countries in which national lidar
scanning campaigns have been conducted.

The TLM models forest as two discrete scattering levels: ground and vegetation,
separated by a distance ∆h and with canopy gaps described by the area-fill factor η,
which is the fraction of the total area covered by the vegetation level. The two-level
approach with canopy gaps is motivated by an interference effect observed in the data
for sparse forest plots, for which the location of the scattering centre in the canopy
is found sensitive to the interferometric baseline.

The ground-corrected complex correlation coefficient is modelled by the TLM as:

γ̃gc =
µ+ eikz∆h

µ+ 1
, (4.6)

where µ the area-weighted backscatter ratio:

µ =
σ0

gr

σ0
veg

1− η
η

. (4.7)
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(a) Reference (lidar vegetation ratio) (b) Estimated (uncorrected area-fill factor η0)

(c) Reference (lidar height H50) (d) Estimated (level distance ∆h)

Figure 4.5: In Paper D, forest height and canopy density are estimated from the
inversion of the TLM. Above, the corresponding maps are compared to lidar-derived
reference maps. The test site is Remningstorp and non-forested areas have been
masked out. Note that there is one year time difference between the TDM and lidar
acquisitions, and growth and forest management have not been accounted for (e.g.,
in the cleared area slightly to the left from the bottom right corner of the images).
The original TDM data have been acquired on 2011-06-04, with a HOA of 49 m, and
at an incidence angle of 41◦.

As the TLM requires only two parameters (∆h and µ), model inversion can be done
individually for each ground-corrected complex correlation coefficient, without the
need for additional SAR acquisitions. Analytical expressions for the computation of
∆h and µ from a ground-corrected complex correlation coefficient are presented in
the paper.

The model is evaluated using eight VV-polarised TanDEM-X acquisitions made
at different baselines (HOAs between 32 and 63 metres) over Remningstorp in the
summers of 2011, 2012, and 2013, and thirty-two, 0.5 hectare circular forest plots
with different heights and canopy densities. The InSAR data have been processed
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using the same InSAR processing algorithm as described in Paper C.
It is concluded that level distance ∆h can be used as an estimate of H50 (50th

percentile of all lidar returns above 1 m or 10% of the maximal height) with a Pearson
correlation coefficient of about 95% and a root-mean-square difference (RMSD) lower
than 10% (or 1.8 m). It is also concluded that the uncorrected area-fill factor:

η0 =
1

1 + µ
(4.8)

can be used as an estimate of the vegetation ratio (the ratio between the number of
lidar returns from above 1 m or 10% of the maximal height and all lidar returns) with
a Pearson correlation coefficient better than 59% and RMSD around 10% (or 0.07).
A HOA-dependent offset is observed for ∆h, and it is most likely caused by residual
SNR and system decorrelation effects, which have not been compensated for.

In Figure 4.5, maps of ∆h and η0 obtained from TLM inversion of a TanDEM-X
acquisition from 2011-06-04 with a HOA of 49 metres and an incidence angle of 41◦

are compared to maps of H50 and VR, derived from lidar data acquired one year
earlier. Forest changes such as growth and forest management procedures have not
been accounted for.

4.6 Paper E

In this paper, biomass is estimated from forest height and canopy density estimates
obtained from the inversion of the TLM presented in Paper D. With an access to the
global TanDEM-X data, the presented approach can be used for frequent, large-scale,
high-resolution mapping of biomass in countries in which national lidar scanning
campaigns have been conducted.

The introduced TLM biomass model (TBM) is a power law function of the level
distance ∆h and the uncorrected area-fill factor η0 obtained from TLM inversion:

B = K∆hαηβ0 , (4.9)

where B is the biomass in tons per hectare, and K, α, and β are model parameters.
The power law form of the model is motivated by similar functions used in lidar-based
biomass mapping.

The model is evaluated using eighteen VV-polarised TanDEM-X acquisitions made
at different baselines (HOAs between 32 and 63 metres) over both Remningstorp and
Krycklan in the summers of 2011, 2012, and 2013. Eight of these images have been
used in the study summarised in Paper D. In Remningstorp, between 32 and 21 forest
plots are used, whereas in Krycklan, 29 forest stands are used. The TBM is compared
to a zero-intercept, linear scaling model (SM), in which biomass is estimated from
a direct scaling of the ground-corrected interferometric height, as proposed in [172].
The models are evaluated in across-acquisition and across-site scenarios, to assess
their operational values.
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(a) Reference (lidar)

(b) Estimated (TDM, TBM) (c) Estimated (TDM, SM)

Figure 4.6: In Paper E, biomass is estimated from forest height and canopy density
estimates obtained from TLM inversion using the TLM biomass model (TBM), and
compared to a scaling model (SM), which scales the ground-corrected interferometric
height to biomass, as proposed in [172]. Above, the corresponding maps are compared
to a lidar-derived reference map. The test site is Remningstorp and non-forested areas
have been masked out. Note that there is one year time difference between the TDM
and lidar acquisitions, and growth and forest management have not been accounted
for (e.g., in the cleared area slightly to the left from the bottom right corner of the
images). The original TDM data have been acquired on 2011-06-04, with a HOA of
49 m, and at an incidence angle of 41◦.

The TBM can explain between 65% and 89% of the AGB variance observed in the
data, with a residual root-mean-square error (RMSE) in the interval 12–19% (median:
15%). If model training and validation are carried out on different TanDEM-X acqui-
sitions or different test sites, the prediction RMSE increases (12–80%, median: 30%).
With α fixed and β a site-dependent constant, the prediction RMSE is lower (12–56%,
median: 17%), while the residual RMSE is similar (12-29%, median: 16%). The SM
shows similar performance when used on Krycklan data, whereas for Remningstorp
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data and across-site retrieval, the performance is poorer.
In general, the retrieval performance of the TBM with fixed α and β is good, with

an RMSE below 20% for all acquisitions in Krycklan and for almost all acquisitions
in Remningstorp with HOA above 40 m. In Remningstorp, where the forest is gen-
erally taller and with more complex horizontal structure (due to management), the
performance of the model is decreased at HOAs below 40 m, where the errors caused
by the insufficient modelling of the vertical structure have the strongest impact. It
is also observed that the HOA-dependent offset in ∆h, noted earlier in Paper D and
most likely caused by the lack of SNR and system decorrelation modelling, causes
reduced performance of the biomass model at low HOAs. A coherence calibration
step is therefore proposed for the future.

In Figure 4.6, a biomass map for Remningstorp, estimated with the TBM using
the forest height and canopy density estimates shown in Figure 4.5, is compared to a
reference biomass map estimated from lidar data, and a biomass map created using
the scaling model (SM), in which biomass is computed by scaling from the ground-
corrected interferometric height (hgc). The TBM-based estimate is better, as it is
able to reproduce the full biomass variance. Note that the time difference between
lidar and SAR acquisitions is one year, and forest changes such as growth and forest
management procedures have not been accounted for.
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Chapter 5

Conclusions

The main scope of the work conducted for this thesis has been to develop methods
for forest parameter estimation from SAR imagery. By using P- and X-band, i.e.,
the lowest and highest frequency bands available and useful for spaceborne imaging
of the Earth, this task has been studied in both the low- and high-frequency regimes.

Both empirical and theoretical models linking forest parameters to polarimetric
and interferometric SAR observables have been developed. Within the models, some
effects previously unaccounted for have been included. At P-band, an improved
biomass retrieval model has been developed by including empirical corrections for the
topographic and moisture variations. At X-band, the estimation of biomass has been
improved and the estimation of canopy density has been made possible by introducing
a model in which canopy gaps are used to explain volume decorrelation.

The models have been developed with their operational values in mind. At P-
band, the proposed biomass model requires one single polarimetric acquisition, which
is expected to be the standard acquisition mode for BIOMASS, and a ground slope
map, which most likely can be derived from a standard TanDEM-X DEM. It has
also been shown that the proposed model can be used in two geographically distant
test sites with the same parameter setup, which reduces the requirements on training
data.

At X-band, the proposed TLM inversion yields estimates of forest height and ca-
nopy density, and it can be performed using single-polarised TanDEM-X acquisitions,
e.g., from the existing global data set, provided that a high-resolution digital terrain
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model (DTM) is available. With the temporal stability of the ground in most forested
regions, the increasing popularity of national lidar scanning campaigns, and the up-
coming P- and L-band InSAR missions (BIOMASS, and possibly also SAOCOM-CS
and TanDEM-L), the availability of high-resolution DTMs will increase with time.
The proposed biomass model requires local estimation of only one parameter related
to canopy density, whereas the other parameters can be fixed for the two studied test
sites, which reduces the requirements on training data.

5.1 Thesis Highlights

At P-band, the following findings can be considered the highlights of this thesis:

å The HH/VV backscatter ratio has been found useful for the compensation of
topographic and moisture variations, which often have similar impact on the
two co-polarised channels, and their influence is decreased when the ratio is
formed.

å It has been shown that the same biomass model can be used with the same
parameter values in both Remningstorp and Krycklan, which are two test sites
separated by 720 km and featuring different types of boreal forest, due to the
large contribution of tree trunks to the total backscatter.

At X-band, the most interesting findings can be summarised in the following
highlights:

å For sparse plots with low canopy density, the location of the scattering phase
centre has been found sensitive to the baseline. This is explained by an interfer-
ence effect occurring when ground- and canopy-level contributions are of similar
strength.

å The contribution of canopy gaps has been found significant at X-band, as shown
in a comparative study of the three models: IWCM, RVoG, and a penetration
depth model. Moreover, direct inversion of a two-level model (TLM), in which
forest is modelled as two scattering levels and penetration can only occur through
canopy gaps, can provide estimates of both forest height and canopy density.

å Biomass can be accurately estimated from forest height and canopy density
estimates obtained from the inversion of the TLM using a power law model.
However, the same exponent for the canopy density estimate cannot be used in
both Remningstorp and Krycklan, due to the large difference in canopy structure.

5.2 Future Prospects

There are several topics that need to be studied in the future to further improve the
results presented in this thesis. For all studies, one of the most important extensions
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is to apply the presented approaches on other data sets (other biomes, acquisition
geometries, frequencies), in order to evaluate the generality of the findings and further
improve the understanding of the governing processes.

At P-band, one of the largest difficulties encountered during forest parameter es-
timation is the influence of topographic and moisture variations on the backscattered
signal, which is to a large degree still unknown. The forward model presented in Pa-
per A does not account for these effects, and the biomass retrieval model presented in
Paper B includes empirical correction terms, the HH/VV-ratio and the surface slope,
which only partially compensate for these effects. Theoretical modelling is needed
for better understanding of the scattering processes, for example using cylinder over
ground models. Moreover, as noted in Paper A, the modelling of the interferometric
coherence also needs to be improved, for example by using other vertical scattering
profiles, or by improved modelling of the RVoG parameters. The inclusion of canopy
gaps in P-band modelling should also be evaluated. Finally, the observed correlation
between the HH-VV phase difference and biomass needs to be studied further using
theoretical models. Also, its potential for biomass estimation needs to be evaluated.

At X-band, the TLM-based methods for forest height, canopy density, and bio-
mass estimation are currently based on the assumptions of known topography, and
negligible SNR and system decorrelation effects. Consequently, the first assumption
makes the current approach unfeasible in regions with unknown topography, and
the latter assumption introduces a HOA-dependent offset in regions with low vol-
ume decorrelation, as observed in Papers D and E. It would be interesting to extend
the current model to the multi-polarised case and evaluate the possibility of reduc-
ing these requirements. Also, the inclusion of a coherence calibration step in the
processing chain may improve TLM inversion performance in lower forests, and the
HOA-dependent offset may be reduced. Additionally, the TLM inversion may be ap-
plied on multi-temporal and/or multi-baseline data, making it possible to study forest
change and/or forest structure. The influence of meteorological conditions needs to
be studied.
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78 References

forestry decision support system: An overview,” Mathematical and Computa-
tional Forestry & Natural-Resource Sciences , vol. 3, no. 2, pp. 87–94, 2011.

[171] M. J. Soja, “Modelling and retrieval of forest parameters from synthetic aper-
ture radar data,” Chalmers University of Technology, Tech. Rep., 2012.

[172] S. Solberg, R. Astrup, J. Breidenbach, B. Nilsen, and D. Weydahl, “Monitor-
ing spruce volume and biomass with InSAR data from TanDEM-X,” Remote
Sensing of Environment , vol. 139, pp. 60–67, 2013.



Part II

Appended Papers

79





Authors:

M. J. Soja and L. M. H. Ulander

Status:

Reformatted and corrected version of the paper published in IEEE Interna-
tional Geoscience and Remote Sensing Symposium (IGARSS), Quebec City,
QC, Canada, 13–18 July 2014, pp. 1061–1064

Paper A

Polarimetric-Interferometric Boreal Forest
Scattering Model for BIOMASS

End-to-End Simulator

81



82 Paper A



POLARIMETRIC-INTERFEROMETRIC BOREAL FOREST SCATTERING MODEL FOR
BIOMASS END-TO-END SIMULATOR

Maciej J. Soja1) and Lars M. H. Ulander1,2)

1) Chalmers University of Technology, Gothenburg, Sweden
2) Swedish Defence Research Agency, Linköping, Sweden

ABSTRACT
A polarimetric-interferometric forward model (FM) for ex-
tended covariance matrix modeling is presented. The FM
has been designed to be used within the end-to-end simu-
lator for BIOMASS, a new ESA satellite mission aiming at
the global mapping of above-ground forest biomass with P-
band synthetic aperture radar (SAR). The FM uses linear re-
gression models for prediction of backscatter intensity and
HH-VV correlation coefficient, and the random volume over
ground (RVoG) model for the prediction of the interferometric
correlation coefficients. For boreal forest, parameter values
for these sub-models have been derived using polarimetric-
interferometric SAR data acquired within the BioSAR 2007
campaign over the Swedish test site Remningstorp. The FM
is evaluated qualitatively in a boreal forest scenario through a
side-by-side comparison with BioSAR 2007 data. The gen-
eral agreement is good, although there are regions with struc-
tures which cannot be reproduced by the model, probably due
to insufficient forest description by the input parameters.

Index Terms— BIOMASS, forward model, extended co-
variance matrix

1. INTRODUCTION

In May 2013, European Space Agency (ESA) selected the
BIOMASS satellite for the 7th Earth Explorer mission. The
main goal of the mission is accurate, high-resolution mapping
of global forest resources in terms of above-ground biomass
(total mass of living forest tissue), biomass change, and for-
est height. This will aid global carbon cycle modelling, and
eventually lead to improved climate change predictions [1].

BIOMASS will feature the first P-band synthetic aperture
radar (SAR) in space, and also the lowest frequency SAR in
space. The main advantage of P-band radar are its penetration
capabilities. In forestry, this means that a P-band radar has the
capability to see through the canopy and it is sensitive to scat-
tering from trunks and large branches, which is where most
biomass is stored. These structures are also significantly more
stable in time (compared to the canopy), which means that
temporal decorrelation at P-band is relatively low, and repeat-
pass, multi-baseline interferometry and tomography will rou-
tinely be carried out. Also, with the fully polarimetric capa-
bilities of BIOMASS, estimation of forest height will be done
from polarimetric-interferometric SAR (PolInSAR) data.

In order to be able to evaluate the performance of the fu-
ture BIOMASS satellite, a BIOMASS end-to-end simulator
(BEES) has been implemented for both boreal and tropical
forests [2]. Using the simulator, system effects can be mod-
eled, and error budgets can be estimated. An important part
of BEES is the forward model, which predicts the extended
covariance matrix for different forest biomes from a small
number of input parameters. A preliminary version of the
model has been presented in [3]. In this paper, the boreal for-
est version of the forward model will be presented in its final
version, and its performance in 2D modelling will be assessed
qualitatively on data from BioSAR 2007.

2. DATA

SAR data were acquired with a flight heading of 200◦ over
Remningstorp, a hemi-boreal test site located in southern
Sweden, by the airborne ESAR system in May 2007 during
BioSAR 2007 [4]. Small-footprint lidar-based estimates of
biomass and forest height for 58 forest stands have been used
for the estimation of model parameters. The errors of the
FM have been estimated using ten 80 m×80 m forest plots,
for which stem diameter has been measured for all trees, and
height for a subset of trees [5]. For quantitative performance
analysis, biomass and forest height maps derived from lidar
data and species stratification information are used as input
to the FM.

3. FORWARD MODEL

The model is designed to compute the extended covariance
matrix for a polarimetric-interferometric pair. First, it is as-
sumed that the backscatter signature is equal for both the mas-
ter and slave images, which gives the following extended co-
variance matrix:

Ĉ6 =

[
V̂ K̂12

K̂H
12 V̂

]
, (1)

where H is the Hermitian (conjugate transpose) operator. V̂
is the polarimetric covariance matrix, formulated as:

V̂ =




σ0
HH 0 ρ̃

√
σ0
HHσ

0
VV

0 2σ0
HV 0

ρ̃∗
√
σ0
HHσ

0
VV 0 σ0

VV


 , (2)
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where the correlation between co- and cross-polarized chan-
nels has been shown to be zero for monostatic acquisitions
[6]. The polarimetric-interferometric covariance matrix K̂12

can be formulated as:

K̂12 =



γ̃HHσ

0
HH 0 ρ̃D

0 2γ̃HVσ
0
HV 0

(ρ̃D)∗ 0 γ̃VVσ
0
VV


 , (3)

where

D =
γ̃HH + γ̃VV

2

√
σ0
HHσ

0
VV. (4)

Backscattering coefficient (σ0) for polarization PQ is mod-
elled in dB using a linear model with an additive error:

[σ0
PQ]dB = aPQ+bPQ log10B+10 log10(cos θi)+N(0, s2PQ)

(5)
where θi is the local angle of incidence, B is the biomass in
tons (Mg) per hectare (100 m x 100 m), and the last term is
a normally distributed, zero-mean error, with standard devia-
tion estimated using the 10 field plots. The parameter values
estimated for the boreal data can be found in Table 1.

Table 1. Parameter values for backscatter model.
Polarization aPQ bPQ sPQ

HH -20.1 8.1 1.3
HV -20.7 4.2 0.7
VV -6.7 0.6 1.2

The complex correlation coefficient between the HH and
VV channels ρ̃ is for the boreal scenario modelled as:

ρ̃ = (0.39 +N(0, 0.072)) · ei(−41.5◦−0.27B+N(0,(11.6◦)2))

(6)
where the last term in both magnitude and phase are normally
distributed, zero-mean errors. The standard deviations have
been estimated from the same field plots.

For the interferometric part, correlation coefficients (γ̃PQ)
are modeled using the random volume over ground (RVoG)
model with two different profile functions. Here, the expo-
nential profile will be used, yielding:

γ̃vol =

∫ htop
0

f(z)eikzzdz
∫ htop
0

f(z)dz
=

1

1+ ikz cos θi
2σ

·e
(

2σ
cos θi

+ikz
)
htop−1

e
2σhtop
cos θi −1

(7)
where σ is the extinction coefficient, htop is top forest height,
and kz is the vertical wave number. This is inserted in the
general RVoG expression giving:

γ̃PQ = eih0kz · γ̃vol · γtemp + µPQ

1 + µPQ
, (8)

where γtemp = e−BT /τD is a temporal decorrelation term,
BT is the temporal baseline, τD is decorrelation time, h0 is
ground height, and µPQ are ground-to-volume ratios.

In the boreal forest model, σ = N(0.1, 0.12) dB/m has
been chosen, based on results from PolInSAR height inver-
sion, and µHH = N(6.4, 1.32) dB, µHV = N(−2.1, 0.72) dB,
and µVV = N(2.2, 0.72) dB were estimated from the data
using polarimetric decomposition. h0, htop, kz , BT , and θi
are known input parameters. τD is set through the choice of
temporal decorrelation scenario.

4. RESULTS

The forward model is evaluated qualitatively for 2D mapping.
Predictions of σ0

PQ, ρ̃, and γ̃PQ are made from biomass map,
forest height map, and DTM, and compared to E-SAR data.
Temporal decorrelation is neglected. The results are shown in
Figures 1-4. The results are in general good, but in the case of
VV-backscatter, HH-VV coherence, and interferometric co-
herences, the model does not predict some spatial changes,
probably due to insufficient description of the scene with the
input data. Information on, e.g., forest density or forest type
would probably improve modeling.
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(a) E-SAR, HH (b) Model, HH (c) E-SAR, HV (d) Model, HV (e) E-SAR, VV (f) Model, VV

Fig. 1. Modeling results for backscattering coefficient compared to E-SAR data. All three polarizations are shown. The black
outline marks the largest region covered by all required input data.

(a) E-SAR (b) Model (c) E-SAR (d) Model

Fig. 2. Modeling results for polarimetric coherence and phase compared to ESAR data. The black outline marks the largest
region covered by all required input data.
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(a) E-SAR, VV (b) Model, VV (c) E-SAR, VV (d) Model, VV

Fig. 3. Modeling results for interferometric coherence and phase compared to ESAR data. VV-polarization is shown here. The
black outline marks the largest region covered by all required input data.

(a) E-SAR, HV (b) Model, HV (c) E-SAR, HV (d) Model, HV

Fig. 4. Modeling results for interferometric coherence and phase compared to ESAR data. HV-polarization is shown here. The
black outline marks the largest region covered by all required input data.
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Regression-Based Retrieval of Boreal Forest Biomass
in Sloping Terrain Using P-Band SAR

Backscatter Intensity Data
Maciej Jerzy Soja, Gustaf Sandberg, and Lars M. H. Ulander, Senior Member, IEEE

Abstract—A new biomass retrieval model for boreal forest using
polarimetric P-band synthetic aperture radar (SAR) backscatter
is presented. The model is based on two main SAR quantities: the
HV backscatter and the HH/VV backscatter ratio. It also includes
a topographic correction based on the ground slope. The model
is developed from analysis of stand-wise data from two airborne
P-band SAR campaigns: BioSAR 2007 (test site: Remningstorp,
southern Sweden, biomass range: 10–287 tons/ha, slope range:
0–4◦) and BioSAR 2008 (test site: Krycklan, northern Sweden,
biomass range: 8–257 tons/ha, slope range: 0–19◦). The new model
is compared to five other models in a set of tests to evaluate its
performance in different conditions. All models are first tested on
data sets from Remningstorp with different moisture conditions,
acquired during three periods in the spring of 2007. Thereafter,
the models are tested in topographic terrain using SAR data
acquired for different flight headings in Krycklan. The models are
also evaluated across sites, i.e., training on one site followed by
validation on the other site. Using the new model with parameters
estimated on Krycklan data, biomass in Remningstorp is retrieved
with RMSE of 40–59 tons/ha, or 22–33% of the mean biomass,
which is lower compared to the other models. In the inverse
scenario, the examined site is not well represented in the training
data set, and the results are therefore not conclusive.

Index Terms—Biomass retrieval, boreal forest, P-band, syn-
thetic aperture radar (SAR), topographic correction.

I. INTRODUCTION

FACING the threat of global warming, one of the most
important topics in climate research is understanding the

terrestrial carbon cycle and predicting future climate changes.
One of the major uncertainties in the current carbon cycle
models lies in terrestrial ecosystems, in particular forests [1].
Moreover, up to 20% of the global emissions of carbon dioxide
are estimated to come from deforestation [2]. Accurate, global-
scale forest mapping is therefore one of the most important
elements of climate modeling. Current global forest maps are
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simply too inaccurate for this task, creating a demand for the
development of new tools.

The most relevant quantity directly related to the forestal
carbon stock is aboveground dry biomass (further on simply
called “biomass”). Biomass is the dry weight of aboveground
forest, including stem, bark, branches, and needles/leaves, but
excluding stump and roots. Biomass is usually measured in
metric tons per hectare (1 ton/ha = 0.1 kg/m2).

Currently, the most accurate technique for remote biomass
mapping is small-footprint lidar scanning (see [3] and refer-
ences therein). However, accurate lidar-based biomass estima-
tion requires high-quality plot-level measurements for training.
Biomass tends also to be underestimated as small trees may
be covered by large trees blocking the laser beam. As with
all optical methods, measurement accuracy is dependent on
weather conditions. In reality, small-footprint lidar scanning is
inefficient for global biomass mapping. Spaceborne lidar has
been considered a possible alternative, but complications arise
chiefly due to large footprint and low coverage, and there are
currently no ongoing spaceborne lidar missions.

Synthetic aperture radar (SAR) is a high-resolution, mi-
crowave imaging sensor which is weather independent and
provides its own illumination. Moreover, SAR systems can
be customized to fit a particular task through the choice of
system parameters (frequency, polarization, incidence angle,
and imaging mode).

SAR imaging at low frequencies (here: below L-band) has
proven itself particularly useful for biomass mapping due to
its superior penetration capabilities and sensitivity to a wide
range of biomass levels. Due to transmission restrictions, there
neither are, nor have been, any satellites in Earth’s orbit with
a SAR sensor operating below L-band. Therefore, all low-
frequency studies have been performed using data acquired
with airborne platforms. The low VHF-band (20–90 MHz) SAR
system CARABAS-II, run by the Swedish Defence Research
Agency (FOI), has previously proven itself useful for accurate
stem volume estimation (see [4] and references therein).

Also, several P-band (approximately 0.20–0.45 GHz) studies
have been performed using data acquired with airborne SAR
systems [5]–[17]. In all these studies, regression models relat-
ing biomass to SAR observables are derived (see Table I for
a summary of these models). They all conclude that biomass
and radar backscatter are correlated, but the presented func-
tions and their regions of validity differ (due to different biomes
and moisture conditions, different acquisition platforms, and

0196-2892/$31.00 © 2012 IEEE
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TABLE I
SUMMARY OF SOME PREVIOUS STUDIES IN WHICH BIOMASS OR STEM VOLUME WERE RELATED TO P-BAND BACKSCATTER THROUGH REGRESSION.

MODELS INCLUDING BACKSCATTER AT OTHER FREQUENCIES THAN P-BAND WERE DISREGARDED. IN SOME CASES, MODELS WERE

JUST HINTED (FOR EXAMPLE THROUGH A STUDY OF CORRELATION), BUT NOT EXPLICITLY DEFINED OR USED IN THE TEXT [5], [7].
NOTE, THAT IN THE CASES OF [10], [12], AND [13], FORWARD MODELS ARE DEFINED

changes in forest structure and surface topography). This means
that the models derived in these papers usually have little or
no application outside the studied test site. This is an obvious
disadvantage when global biomass mapping is concerned.

At low frequencies, radio waves are generally scattered from
larger objects, which in the case of trees means trunks and large
branches. The increased temporal stability (as compared to
for example X-band) makes it possible to perform repeat-pass
polarimetric SAR interferometry (PolInSAR), which produces
forest height estimates [18]–[20]. However, both PolInSAR-
based height estimation and allometric height-to-biomass con-
version are sensitive to parameters such as vertical structure,
species composition, and management procedures [21]. Since
it is not likely that these parameters can be estimated accu-
rately with radar, accurate biomass estimation from PolInSAR
is aggravated. Possible improvements include multi-baseline
PolInSAR [22], [23] and different tomographic techniques
[24]–[26]. However, these techniques require the acquisition
of high-quality multi-baseline data, which is a very costly and
time-consuming process.

Although the temporal stability and biomass sensitivity are
both improved at low frequencies, a different problem oc-
curs instead: ground topography. The double-bounce effect
(scattering between ground and trunk, or vice versa) is very
prominent at low frequencies, and ground tilt has an obvious
influence. This issue has been addressed in [27], where a
physical-optics model was successfully used to describe the
influence of topography on radar backscatter from forests (at
both VHF- and P-band). In [4] and [28], a simplified ap-
proach based on electromagnetic models like those described in
[29]–[34] was used at VHF-band to reduce topographic influ-
ence, giving stem volume retrieval results comparable to those
for flat ground. In this text, an even simpler approach will be
used. The influence of topography will be examined as the
change in model parameters for some reference models, and
the most prominent factors will be included.

Due to the recent opening of the P-band at frequencies
432–438 MHz for spaceborne use (World Radiocommuni-
cations Conference 2003 [35]), a fully polarimetric P-band
SAR satellite system called BIOMASS has been proposed to
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European Space Agency (ESA) for the 7th Earth Explorer
mission [35]–[39]. The system is planned to employ both
intensity-based biomass retrieval and PolInSAR-based height
retrieval. The two methods show different performance in dif-
ferent environments and are complementary, thus extending the
capability of the proposed satellite.

In this paper, a new model for biomass retrieval from po-
larimetric SAR backscatter is presented. The model is tested
for its sensitivity to site topography and for temporal change.
Also, the model is compared to some previously published
models and evaluated using two sets of test data. The data were
acquired within two BioSAR campaigns performed in 2007
and 2008 in the two test sites Remningstorp and Krycklan,
respectively, both situated in Sweden. The test sites are located
720 km apart and represent two different cases of boreal forest.
In previous papers dealing with biomass retrieval from BioSAR
data, the two test sites were treated separately [15], [17],
[40]–[42]. In this paper, models fitted to data from one test site
are evaluated on the other. In this manner, the model is validated
independently of the training data set. An excerpt of the results
presented here has been published in [43].

This paper begins with a brief description of the experimental
data (Section II). Next, in Section III, the previously published
models are presented, and the new model is introduced. There-
after, the models are evaluated with respect to temporal change,
topographic change, and across-site retrieval (Section IV).
The results are summarized, and conclusions are drawn in
Section V.

II. EXPERIMENTAL DATA

The experimental data used in this paper were acquired
within two BioSAR campaigns conducted by the airborne ex-
perimental SAR (ESAR) platform from the German Aerospace
Center (DLR). Ground-truth data were collected and processed
by Swedish University of Agricultural Sciences (SLU).

A. Test Sites

BioSAR 2007 was conducted in Remningstorp (58◦28′ N,
13◦38′ E) situated in southern Sweden, see Fig. 1. Rem-
ningstorp is fairly flat with ground slopes at stand level less
than 5◦ (computed from a 50 m × 50 m digital elevation model,
DEM). The test site covers approximately 1200 ha of produc-
tive forest land, and the forest consists primarily of Norway
spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris
L.), and birch (Betula spp.). For a thorough description of the
campaign, see [15], [44].

BioSAR 2008 was conducted in Krycklan (64◦14′ N,
19◦46′ E) located in northern Sweden, see Fig. 1. Krycklan
is situated 720 km north-north-east of Remningstorp. Unlike
Remningstorp, Krycklan has a strongly undulating topography
with ground slopes on stand level up to 19◦ (again, computed
from a 50 m × 50 m DEM). The forest is dominated by
Norway spruce and Scots pine. For a thorough description of
the campaign, see [45].

It is worth mentioning that a third BioSAR campaign has
been conducted in Remningstorp in October 2010, aiming at
the detection of long-term temporal changes in Remningstorp,

Fig. 1. Two test sites used in BioSAR 2007 and BioSAR 2008 campaigns are
shown here. The test area in Remningstorp was covered by SAR imagery in the
spring of 2007, whereas Krycklan was covered in October 2008. The distance
between the two sites is 720 km.

see [46], [47]. However, data processing and analysis were not
finished at the time of writing of this text, and this campaign is
thus not included.

In the following text, the two test sites will sometimes be
referred to as Re (Remningstorp) and Kr (Krycklan).

B. In-Situ and Laser Scanning Data

In conjunction with both BioSAR campaigns, plot-level
in-situ data and airborne lidar scanning data were collected
for the estimation of biomass. Species stratification informa-
tion extracted from aerial photography was also used to aid
biomass estimation. Biomass maps with 10 m × 10 m pixels
were produced for both Remningstorp and Krycklan. Slightly
different data collection strategies and estimation procedures
were used for the two campaigns, and campaign reports should
be consulted for a thorough description [44], [45].

Table II summarizes four reference data sets used in this
work, together with their approximate error levels and their
type. In forestry, a distinction between “plots” and “stands”
is made. Stands are relatively homogenous forest regions with
similar species composition, biophysical characteristics (e.g.,
height and tree number density), and management procedures.
They can vary in size and shape, and they are the main unit
used for forest mapping and management [48]. Plots are usually
smaller stand subsets of regular shape, which are used as
within-stand samples. They are usually distributed in a regular
pattern. For each test site, two data sets are available. Here
follows a short description of these data sets.

The first data set in Remningstorp consists of 10 80 m ×
80 m plots [44]. Only trees with stem diameter at breast height
(dbh, measured 1.3 m above ground level) larger than 5 cm were
included in the measurements. Position, dbh, and species were
measured for all relevant trees for all ten plots. Tree height was
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TABLE II
SUMMARY OF AVAILABLE BIOMASS REFERENCE DATA. ONLY STANDS COMPLETELY COVERED BY P-BAND SAR DATA ARE INCLUDED. SID STANDS

FOR “SITE ID” (RE FOR REMNINGSTORP, KR FOR KRYCKLAN). GID STANDS FOR “GROUP ID” AND REFERS TO TYPE OF STAND-WISE DATA SET

(BASED ON MAIN DATA SOURCE). N IS THE SIZE OF EACH DATA SET. TYPE REFERS TO THE CORRECT DENOMINATION OF THE DATA POINTS, AS IT

WOULD BE REFERRED TO IN FORESTRY. MEAN B AND B RANGE REFER TO THE MEAN BIOMASS AND BIOMASS RANGE FOR EACH DATA SET.
AREA REFERS TO THE STAND AREA (OR AREA RANGE) IN HECTARES. ERROR REFERS TO THE ESTIMATED STANDARD BIOMASS ERROR (IF IN %,

THEN RELATIVE MEAN B, IF A PERCENTAGE INTERVAL, THEN DIFFERENT PERCENTAGE FOR EACH STAND RELATIVE ITS MEAN BIOMASS)

TABLE III
SUMMARY OF AVAILABLE STAND-WISE SAR DATA. SID STANDS FOR “SITE ID” (RE FOR REMNINGSTORP, KR FOR KRYCKLAN). DID STANDS FOR

“DATE ID” AND REFERS TO THE ACQUISITION DATE. IMAGE ID REFERS TO THE IMAGE IDENTIFICATION NUMBERS AS DEFINED IN [44], [45].
GID STANDS FOR “GROUP ID” AND REFERS TO TYPE OF STAND-WISE DATA SET (LID FOR LIDAR MEASUREMENT-BASED STANDS, AND INS

FOR IN SITU MEASUREMENT-BASED STANDS). COVERED STANDS REFERS TO THE NUMBER OF STANDS COVERED FOR EACH SCENE,
RESPECTIVELY. BIOMASS RANGE REFERS TO THE BIOMASS RANGE OF THE COVERED STANDS (IN tons/ha) FOR EACH SCENE,

RESPECTIVELY. CONSULT ALSO TABLE II FOR A DESCRIPTION OF THE DIFFERENT REFERENCE DATA SETS

measured for all trees in four plots, and for a subset of trees in
the other six plots. Biomass was then estimated for each single
tree using Marklund’s species specific allometric formulas, see
[49]. The biomass estimation error (standard deviation of the
residuals) computed using error estimates found in [49] is
estimated to a few percent [15].

The second data set in Remningstorp consists of 58 stands
of irregular shape and sizes between 0.5 and 9.4 ha [44]. A
systematic grid of 849 circular field plots (radius 10 m) with
a spacing of approximately 40 m was used. Within each field
plot, all trees with dbh larger than 5 cm were calipered, and
tree height was measured for approximately 10% of these trees.
These data were then used together with lidar scanning data and
species stratification information to obtain estimates of biomass
for all 58 stands. The estimated standard biomass error for these
58 stands is 25 tons/ha, computed using validation against the
ten plots described in the previous paragraph, see [15].

The first data set in Krycklan consists of 29 stands of irregu-
lar shape and sizes between 1.5 and 22 ha [45]. Systematic grids
of circular field plots (radius 10 m) were laid out in each stand.
The spacing of each grid was selected to give approximately ten
field plots per stand. For each field plot, all trees with dbh larger
than 4 cm were calipered, and the species was determined.

Tree height and age were also measured for approximately
1.5 randomly chosen sample trees in each field plot. Biomass
was then determined using Petersson’s biomass functions [50].
The estimated standard biomass error was computed based on
the number of field plots within each stand and the variation
between these plots within each stand [45], [51]. This error
estimate varies between 4 and 21%, depending on stand.

The second data set in Krycklan consists of 97 plots. This set
has been introduced in [41] and it is based on data acquired
from airborne lidar scanning. Functions estimating biomass
from lidar observables were derived using multiple regression
and studies of residuals based on field plot data (both from
the previously mentioned field plots situated within stands and
additional 110 field plots randomly positioned in the central
part of the Krycklan test site). A biomass map was then
created using lidar data with additional species information
acquired from aerial stereo photography interpretation. Ninety-
seven circular plots (radius 50 m) were selected within the
region fully covered by the biomass map and SAR images for
all four flight headings [see Section II-C and Fig. 2(b)], and
mean biomass estimates were extracted from the biomass map.
The plots were selected to have as constant ground slope as
possible. The standard biomass error was here estimated to be
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Fig. 2. Different acquisition headings are visualized here for (a) BioSAR
2007: Remningstorp, and (b) BioSAR 2008: Krycklan. In red, image frames
for the main headings are shown (headings used for PolInSAR height retrieval
and SAR tomography; 200◦ in Remningstorp, 134◦ and 314◦ in Krycklan). In
blue, image frames for additional headings are shown (179◦ in Remningstorp,
43◦, 134◦ (flown twice), 314◦, and 358◦ in Krycklan). In green, the borders
of the test sites are shown. As background, polarimetric SAR images are used
(HH in the red channel, HV in the green channel, and VV in the blue channel;
all channels are scaled for optimal viewing). ESAR is a left-looking system.

16%, which is equal to the error of the corresponding biomass
map, for which it was computed by cross-validation against the
previously mentioned 29 stands [45].

As it can be observed, biomass estimates for the data sets
based on plot-level measurements are generally more accurate
than for those based on maps and lidar data. In this text, the
available reference data will therefore be divided in two groups.
The stands and plots with biomass estimated only from plot-
level in-situ measurements will be referred to as INS-stands,
while the other data sets will be referred to as LID-stands, see
Table II. Note, that although the stands can vary drastically in
size (0.5–22 ha), the number of looks is at least 390 (for the
0.5-hectare stands, see [15]), which allows to disregard the
variation in stand area in the further analysis.

Fig. 3. Basic acquisition geometry. The ground normal is n̂, and the ground

slope is defined by the two angles u and v. The incident unit wave vector k̂i is
assumed to lie in the y–z-plane.

C. SAR Data

In Remningstorp, P-band SAR data were collected during
three different periods of spring 2007: 3rd of March, 31st of
March to 2nd of April, and 2nd of May. At each occasion, two
flight headings were used for P-band: 179◦ and 200◦ relative
north, marked in blue and red, respectively, in Fig. 2(a). The
first track features steeper incidence angles for all stands, close
to those expected for a spaceborne scenario (all stands lie in
near range with nominal incidence angles between 26◦ and
35◦). The second track features a wider range of incidence
angles (between 30◦ and 50◦). It was flown several times at each
occasion at different baselines in order to provide PolInSAR
and tomographic data. No precipitation was observed within
24 h prior to the acquisitions in the vicinity of the observa-
tion point (58◦27′ N, 13◦40′ E, one automatic weather station
maintained by the Swedish Meteorological and Hydrological
Institute). Field notes and photography from March show, that
the forest soil was often saturated by water and standing water
on the surface was commonly observed, most often due to
the recently melted snow present in these areas. In April and
May, corresponding observations show, that the ground had
dried out and the soil moisture was considerably lower. These
observations are consistent with the fact, that May and June are
generally the driest period of the year in the region.

In Krycklan, P-band SAR data were acquired during two
days only: 14th and 15th of October 2008. The first day, the
main flight track (134◦) was flown several times at different
baselines for PolInSAR use. The same area was also covered
from the opposite direction (314◦). The second day, SAR
data of a smaller area were collected from four directions
(headings: 43◦, 134◦, 314◦, and 358◦ relative north). These
additional flight tracks were selected in such a way that the
regions with strongest topographic variability were covered by
data from all flight tracks. In Fig. 2(b), an overview for the
different acquisitions is shown. Image frames for the two main
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Fig. 4. Backscatter gamma nought for HH, HV, and VV, as well as HH/VV backscatter ratio are here plotted in dB for both Krycklan and Remningstorp. Data
points are plotted in different colors and markers if they represent different acquisition time and site. Four running average curves are also plotted to simplify trend
investigation. Their colors correspond to the colors of the data points. The grid spacing in y-direction is 2 dB in all four plots.

acquisitions are shown in red, whereas image frames for the
additional acquisitions are shown in blue. No precipitation was
observed at the test site before and during the acquisitions.
Weather conditions were recorded using an operational weather
station found at the nearby Svarteberget Research Station, and
soil moisture was measured using samples from 10 stands in
Krycklan. For a thorough description of the weather and soil
moisture data, see [45].

Averaged, stand-wise backscatter data were extracted from
the geocoded SAR images for each stand in both Remningstorp
and Krycklan. A 50 m × 50 m DEM was used for geocoding
and normalization. Although high-resolution lidar DEMs were
also available for both test sites, they were not used because the
evaluation scenario would be less realistic as comparable DEM
resolutions are not available on global scale. All normalization
procedures were performed before averaging, that is on high-
resolution SAR data. A buffer zone of 10 m was also added
to avoid border effects. In some cases, there were several
geocoded SAR images acquired in the same scenario (same
site, same imaging geometry, and same acquisition occasion).
Also, not all stands were covered by all images, and thus the
number of available stands was different for different scenarios.
In Table III, the number of stands and the number of geocoded
SAR images available for each scenario are shown.

Henceforth, the different data sets will in some cases be
referred to using shorter notation:

• Site ID (SID): Re for Remningstorp and Kr for Krycklan,
• Group ID (GID): INS for in-situ based stand-wise data,

and LID for lidar based stand-wise data,
• Date ID (DID): Mar, Apr, and May for the acquisitions

in Remningstorp in 2007, and Oct for the acquisitions in
Krycklan in 2008.

III. BIOMASS RETRIEVAL MODELS

In the following section, the models evaluated in this paper
will be described. A motivation for the selection of the models
introduced in this paper will be given. The basic geometry is
shown in Fig. 3.

In this paper, the following convention will be used:

[X]dB = 10 log10(X) (1)

where X is a power ratio. Also

ŴMn = log10(B̂Mn) (2)

where B̂Mn is a biomass estimate from model Mn in tons/ha.
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The scattering coefficient σ0 is the averaged radar cross
section per unit area [52]. It can be defined as

σ0
PQ =

4π
〈
|SPQ|2

〉

A
(3)

where SPQ is the scattering matrix element for polarization PQ
and A is the area of a resolution cell. It is common to choose
A to be the projection of a slant range resolution cell to the
ground [53]

A =
A0

cos ψi
(4)

where A0 is the area of the slant range resolution cell, and
cos ψi is a projection factor

cos ψi = n̂ · (x̂ × k̂i) (5)

where n̂ is the ground surface normal unit vector, x̂ is the unit
vector pointing in the flight direction, and k̂i is the unit vector
pointing in the propagation direction, see Fig. 3.

For a rough, forested surface, the normalization to σ0 is
not sufficient due to a residual dependence on the angle of
incidence (caused by different penetration depths). A better
normalization called γ0 is used

γ0
PQ =

σ0
PQ

cos θi
(6)

where θi is the local incidence angle (see Fig. 3).

A. Topographic and Temporal Effects

In Fig. 4, scattering coefficients for HH, HV, and VV, and
the ratio HH/VV are plotted against biomass for all data from
Remningstorp and Krycklan. The x-axes are the same for all
four plots. The y-axes have the same scale (spacing between
grid lines), but the values are shifted for better viewing. Color
coding refers to the acquisition time. Running average curves
are also plotted in order to simplify trend investigation.

Looking at the three polarizations HH, HV, and VV in Fig. 4,
the following observations can be made:

1) VV backscatter is poorly correlated with biomass in all
cases,

2) HH backscatter shows much higher variability in
Krycklan than in Remningstorp,

3) backscatter at all polarizations is typically several dB
lower in Krycklan than in Remningstorp,

4) reduced sensitivity can be observed in Krycklan at all
polarizations above approximately 100 tons/ha,

5) an average backscatter shift by around 0–2 dB can be seen
from March to May in the Remningstorp data.

Following point 1), it can be concluded that, of all polariza-
tions, VV is least sensitive to biomass, making it a potential
indicator of other properties, such as topography, moisture
conditions, and forest structure. The observation from point
2) can be explained by the influence of topography. Krycklan
data feature higher slopes and better directional representa-
tion for each stand (acquisitions from multiple headings). The
backscatter shift referred to in 3) may be explained by different

forest structure and moisture change. Also, the problem de-
scribed in 4) is most certainly an effect of topography (most
of the high-biomass LID-stands in Krycklan are located in
topographic terrain, see Fig. 6 and Section III-C). Finally,
the backscatter shift in 5) is most likely due to moisture
change. Radiometric calibration has been carefully evaluated
using trihedral corner reflectors (see [44]), and the maximal
measured variation is only 0.8 dB. It is thus concluded that the
measured backscatter shift cannot be explained by a radiometric
calibration error.

When trying to define a model suitable for both Rem-
ningstorp and Krycklan, the five points mentioned above need to
be taken into consideration. It is apparent that biomass retrieval
from one curve fitted to all (or parts of) the data may often give
very poor results when applied on (parts of) the rest of the data.

One possible way to avoid the aforementioned problems is
by finding a biomass indicator less susceptible to temporal and
topographic variations. This can be partly achieved by using
the ratio of HH- and VV-backscatter, the co-polar ratio. This
observable has been plotted against biomass in the bottom plot
to the right in Fig. 4. By creating the HH- to VV-backscatter
ratio, common factors are eliminated. Biophysical forest pa-
rameters such as forest structure, ground surface roughness, and
moisture will to some degree have similar impact on both HH
and VV, and their contribution in biomass estimation can be
decreased by the use of the HH/VV ratio. Whereas the temporal
and site-to-site change has been reduced, the variability is still
high. Therefore, instead of using the ratio on its own, it will
be combined with HV backscatter, which has previously shown
the most consistent correlation with biomass [38], at least in
areas with modest topographic variations.

As mentioned, the influence of topography has been de-
creased by the inclusion of the HH/VV ratio, but not fully
suppressed. A complementary way of improving the retrieval
is by finding a way to compensate for topographic variations
using explicit functions, derived either from experimental data,
from models, or from both.

An additional important factor to be considered is the number
of regression parameters. With too many regression parameters
(too many predictors), the risk of overfitting increases, and the
model may lack generality. Moreover, the demand on training
data increases as more points are needed for stable fitting. On
the other hand, with too few regression parameters, the chosen
predictors may not be sufficient for accurate modeling. It is thus
important to optimize the number of model parameters.

B. Basic Model

The first approach for a biomass retrieval model is based on
a linear function of backscatter in three polarization channels
(based on [11], [14]–[16])

ŴM1 = a0+a1

[
γ0
HV

]
dB

+a2

[
γ0
HH

]
dB

+a3

[
γ0
VV

]
dB

(M1)

where a0 to a3 are model parameters and γ0
PQ is the normalized

scattering coefficient gamma nought for polarization PQ. The
model (M1) makes use of three observables, and thus four
parameters need to be estimated. The results show that a3 has
very high uncertainty making γ0

VV not suitable for retrieval
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Fig. 5. Results of topographic investigation on LID-stands from Krycklan with upper biomass limit of 120 tons/ha. The topmost row of plots shows clustering of
the data points in groups with similar u-angle for three grouping setups (four, six, and eight groups with similar number of data points). The groups are delineated
with red bounding boxes showing the variability in u and biomass of each group. The red crosses represent the mean slope-mean biomass points for each group.
Each group has a number appointed to it in the upper right corner of the corresponding bounding box. The second and third rows of plots show how the second
parameter of the fitted models varies with u for two models. Running average curves are shown for easier trend investigation. One standard deviation confidence
intervals for the estimated parameters are also shown.

(as already observed in Fig. 4). Furthermore, earlier studies
indicate that a model based on both HH and HV may not be
significantly better than one based on HV alone [15]. Thus, a
simpler model using only one polarization will be evaluated
(also used in [38])

ŴM2 = a0 + a1

[
γ0
HV

]
dB

. (M2)

Following the observations about the co-polar ratio made in
Fig. 4 and Section III-A, i.e., setting:

a3 = −a2

in (M1), a new model including the HH/VV ratio is constructed

ŴM3 = a0 + a1

[
γ0
HV

]
dB

+ a2

([
γ0
HH

]
dB

−
[
γ0
VV

]
dB

)
(M3)

which makes use of all three observables but only three pa-
rameters need to be estimated. A similar model was presented
in [11].

C. New Model With Topographic Correction

Although the topographic correction introduced in [4] and
[28] has shown good results at VHF-band, its functional form

Fig. 6. Distribution of biomass and surface slope for all 97 LID-stands in
Krycklan. Note that above approximately 120 tons/ha, most stands are located
in sloping terrain. The black line indicates the upper biomass limit for the stands
used during the parameter study described in Section III-C.

is too complicated for this work. Instead, a different approach is
chosen. In order to find one single, most important topographic
indicator, the following functions relating biomass to the two
observables HV and HH/VV ratio were fitted to the experimen-
tal data:

Ŵ1 = C1,0 + C1,1

[
γ0
HV

]
dB

(7)

Ŵ2 = C2,0 + C2,1

([
γ0
HH

]
dB

−
[
γ0
VV

]
dB

)
(8)
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being the two main elements of (M3). Ŵ1 and Ŵ2 are related to
biomass according to (2). The experimental data were divided
into smaller groups with similar ground slope, and the fitting
was done separately for each group. This way, each model
parameter could be studied against the mean value of the
topographic indicator for each group.

Four topographic indicators were considered in this study:
the local incidence angle θi, the difference between local and
nominal incidence angles θi − θ0, the surface slope angle u,
and the surface slope direction angle v. Although this study
was done for all four indicators, the most conclusive results
of this study, as well as the best biomass retrieval results, were
achieved using u-based topographic correction. Therefore, only
the results from that part of the study are presented.

In first row of plots in Fig. 5, the results from grouping by
similar surface slope angle u are shown in three plots. The
data points used here consisted of LID-stands from Krycklan
with upper biomass limit set to 120 tons/ha. This limit was
introduced to allow as uniform biomass-slope distribution as
possible (see Fig. 6). The number of groups varies between 4 (to
the left), 6 (in the middle), and 8 (to the right). Each group has
approximately the same number of members. For each stand,
the mean backscatter coefficient from four headings was used
to reduce the variability due to different angles v.

In the second and third rows of plots in Fig. 5, the values of
the second parameters C1,1 and C2,1 in (7) and (8) are plotted
against u for three grouping setups. The constant parameters
C1,0 and C2,0 depend not only on u, but also on other effects
that cannot be predicted from the observables. They are thus not
studied here. Whereas C1,1 appears to be difficult to relate to u
with a simple function, C2,1 shows a more clear dependence
on u. The first approximation of this dependence is a linear
function, which suggests an additional term in (M3) consisting
of the product of the surface slope u and the HH/VV ratio

ŴM4 = a0 + a1

[
γ0
HV

]
dB

+ a2

([
γ0
HH

]
dB

−
[
γ0
VV

]
dB

)

+ a3 · u
([

γ0
HH

]
dB

−
[
γ0
VV

]
dB

)
. (M4)

D. Reference Models

As reference, models presented in previous works by other
researchers will be used. First, a single polarization model

ŴR1 = C0 + C1

([
γ0
HV

]
dB

− b0

)
(R1)

with constants C0 = 3.8914 and C1 = 0.1301 as presented in
[54]. The parameter b0 is not explicitly included in [54], but is
needed, and can be estimated from training data. Note, that (R1)
is a simplified version of (M2) with constant slope (a1 = C1

and a0 = C0 − C1 · b0).
Also, a seven-parameter model is used [14]

ŴR2 = a0 + a1

[
σ0

HV

]
dB

+ a2

[
σ0

HV

]2
dB

+ +a3

[
σ0

HH

]
dB

+ a4

[
σ0

HH

]2
dB

+ a5

[
σ0

VV

]
dB

+ a6

[
σ0

VV

]2
dB

. (R2)

In [14], a more advanced model including topographic cor-
rections was also presented and proved suitable for biomass

retrieval from P-band SAR data acquired with the AirSAR
platform over the Yellowstone National Park. However, that
model was not used in this study because a comparison with
(R2) showed that the latter model was in fact more suitable for
BioSAR data and also had fewer parameters (7 instead of 14).
Note, that in (R2), σ0 is used instead of γ0.

IV. MODEL VALIDATION AND DISCUSSION

In this section, the models presented in Section III will
first be tested on data sets from Remningstorp to evaluate the
influence of temporal change, mainly in terms of moisture con-
ditions (Section IV-B). Thereafter, the models will be tested on
data sets from Krycklan to evaluate the influence of topography
(Section IV-C). In Section IV-D, the models will be evaluated
across sites, i.e., models with parameters fitted to one test site
will be used for biomass retrieval in the other test site. Next,
in Section IV-E model errors will be studied against biomass
for the three models that showed the best performance in the
first three tests. Finally, in Section IV-F, biomass maps will
be produced using the best model, and mapping errors will be
pointed out and discussed.

Define the estimation error as

R̂(i) = B̂(i) − Bref(i) (9)

where B̂(i) is the estimated biomass using SAR observation i,
Bref(i) is the corresponding reference biomass. Note, that one
single observation index i sweeps both through all stands and
all acquisitions. The accuracy of the models will be evaluated
using several quantitative measures.

• Root-mean-square error (RMSE) is defined as

RMSE =

√
1

N

∑

i

R̂(i)2 (10)

where N is the total number of observations.
• Bias is defined as the mean of the estimation error

bias =
1

N

∑

i

R̂(i). (11)

With this notation, positive bias means overestimation, and
negative bias means underestimation.

• Standard deviation of the estimation error can be com-
puted from (10) and (11) as

standard deviation =
√

(RMSE)2 − (bias)2. (12)

• Coefficient of determination R2 is a measure of how well
a linear model fits the data in comparison with a simple
average [55]. It is computed according to

R2 = 1 −
∑

i

(
Bref(i) − B̂(i)

)2

∑
i

(
Bref(i) − Bref

)2 (13)
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where

Bref =
1

N

∑

i

Bref(i)

is the mean reference biomass. For accurate modeling, R2

should be as close to one as possible. Values below zero
indicate that better modeling results would be achieved
with an average of the reference data.

• Relative error is defined as

relative error = 100% · B̂ − Bref

Bref
. (14)

A. Data Selection and Model Training

Since the model performance depends on the reliability of
model parameter estimation (model training), the choice of the
data used for training demands care.

First, the training data need to cover a large parameter range
and have a reasonable accuracy. Lidar-based measurements
present a good compromise between accuracy and coverage.
Therefore, LID-stands presented in Table II will be used as
training data.

The number of SAR measurements is not equal for all stands,
and not all stands are always covered (see Table III). Also, in
some cases, more than one geocoded SAR image is available
for each scenario (same site, same imaging geometry, same
acquisition date). A bias problem may thus occur. To minimize
that problem, only one measurement per stand from each site,
each date, and each heading was chosen to be used, and only
the LID-stands covered by all images were used for training.

In Remningstorp, two geocoded images with zero nomi-
nal baseline were available for each acquisition date at the
200-degree heading. Since no systematic differences could be
observed in the stand-wise data between the two acquisitions,
the second acquisition specified in Table III was arbitrarily
chosen. In case of the two headings 134◦ and 314◦ in Krycklan,
for which multiple images were available, the choice was made
to maximize the number of covered stands. The following
images were therefore used:

• Remningstorp:
— heading 179◦: one image for each date (0110, 0206, and

0412),
— heading 200◦: one image for each date (0109, 0306, and

0411).
• Krycklan:

— heading 43◦: one image (0304),
— heading 134◦: one image (0104),
— heading 314◦: one image (0103),
— heading 358◦: one image (0301).

The underlined numbers in parentheses refer to the identi-
fication numbers of each image, as shown in Table III and in
[44], [45].

In total, Remningstorp data suitable for training were limited
to a maximum of 46 LID-stands (out of 58) and six acquisi-
tions for each stand (out of nine, see Table III). For Krycklan,
data suitable for training were limited to a maximum of

97 LID-stands and four acquisitions for each stand (out of
seven, see Table III). Note, that in many cases, smaller subsets
of these data sets were used for training. In cases when more
than one acquisition per stand was used, different observations
in the training data set were not entirely independent of each
other, which might cause problems in the statistical analysis. In
Section IV-E, this issue is pointed out and discussed.

Since all the models used in this text are linear, least-squares
as implemented in Matlab function regress was used for
parameter estimation.

For best quantitative validation, high-accuracy INS-stands
were used. For temporal validation in Remningstorp, the same
restrictions as for training data applied to validation data in
order to be able to make fair comparison between headings. For
the other validation scenarios, all available SAR acquisitions
for each stand were used for biomass prediction, giving up
to nine biomass values for some stands in Remningstorp and
up to seven biomass values for some stands in Krycklan. This
approach increases the influence of the well-represented stands
during validation.

B. Temporal Validation

In this part, the models were trained using LID-stands in
Remningstorp and validated using INS-stands from the same
test site. Only the stands fully covered by both 179- and
200-degree acquisitions were used. Each combination of dates
was examined, as well as the results of training and validation
on all three dates. RMSE are presented in Table IV in tons/ha
together with the coefficients of determination R2. The mean
biomass for validation data is 181 tons/ha. In this comparison,
model (M4) was not included since topography is not signifi-
cant in Remningstorp.

Looking at same date retrieval (training and validation on
the same date), all models show reasonable performance with
RMSE ranging between 35 and 60 tons/ha (19–33% of mean
biomass). However, as the retrieval scenario becomes more
difficult, and the training and validation dates are further apart,
the single polarization models (R1) and (M2) often show
significantly higher errors compared to models including all
polarizations.

Comparing the two headings (and keeping in mind that the
179-degree heading features steeper incidence angles), it can
be observed that for models (R1) and (M2), the retrieval is
more stable across dates for the 179-degree heading (however,
it gives in general worse results). Moreover, the data set used
for training seems to affect the results much more for the
179-degree heading than for the 200-degree heading, for which
only the temporal distance between training and validation data
seems of an importance (the error is lowest on the diagonal and
higher off-diagonal). This is clearly visible for models (M1) and
(M3) at the 179-degree heading, where training on May data
gives RMSE around 40 tons/ha, no matter which date is used
for validation. For training on April data, the same values lie
over 60 tons/ha.

Also, when trained and validated using all temporal acqui-
sitions, full polarization models (R2), (M1), and (M3) show
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TABLE IV
RESULTS OF TEMPORAL VALIDATION OF MODELS 1–5 IN TERMS OF RMSE (tons/ha, FIRST ROW) AND R2 (SECOND ROW). COLOR CODING BY

RMSE RELATIVE MEAN BIOMASS (181 tons/ha): WHITE FOR 20% AND BELOW, BLACK FOR 100% AND ABOVE

TABLE V
RESULTS OF TOPOGRAPHIC VALIDATION OF MODELS 1–6 IN TERMS OF RMSE (tons/ha) AND R2 (IN PARENTHESES). COLOR

CODING BY RMSE RELATIVE MEAN BIOMASS (95 tons/ha): WHITE FOR 20% AND BELOW, BLACK FOR 100% AND ABOVE
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TABLE VI
RESULTS OF FLAT-TO-TOPOGRAPHIC VALIDATION OF MODELS 1–6 IN TERMS OF RMSE (tons/ha) AND R2 (IN PARENTHESES). COLOR

CODING BY RMSE RELATIVE MEAN BIOMASS (95 tons/ha): WHITE FOR 20% AND BELOW, BLACK FOR 100% AND ABOVE

better results, particularly for the 200-degree heading with
retrieval error as low as 39 tons/ha (22%).

It can be observed here that (R1) often performs better than
(M2) in spite of the fact that it has one parameter instead of
two, but otherwise the same structure. This is an indication
of possible overfitting with (M2). Model (R1) was in fact
developed from (M2) using data sets from several different
test sites and campaigns (both tropical and boreal). As the
estimates of the slope parameter in (M2) were found consistent
for these data sets, the slope could be set to a constant. Almost
all performance analysis in this paper is done using independent
training and validation sets, which helps to detect overfitting.

C. Topographic Validation

In this part, the models were trained and validated us-
ing different heading combinations in Krycklan. The RMSE
and R2 are shown for all training-validation combinations in
Table V. The mean biomass level for Krycklan INS-stands is
95 tons/ha. The models which include all three polarizations,
(R2), (M1), (M3), and (M4), show slightly better performance
than the two single polarized models (R1) and (M2), but the
improvement is small. Perhaps surprisingly, the correction in
(M4) does not improve the retrieval results in this case because
the variability in backscatter from one stand is not reduced by
the model (since only the slope angle u is included in the model
and this angle is constant for all acquisition geometries).

In general, all models give errors higher than approximately
27% (26 tons/ha). Validation results are more conclusive for
the two main headings (134◦ and 314◦) because the number of

validation points is 27 and 28, compared to 9 and 10 for the
other two headings. Also, the distribution of slopes for different
biomass levels is nonuniform in the training data. The high-
biomass stands are situated in sloping terrain, see Fig. 6.

D. Across-Site Validation

The across-site test was done in two steps: training in
Remningstorp and validation in Krycklan, and vice versa. These
two tests will be evaluated separately.

1) Flat-to-Topographic: A problem occurs when the mod-
els are trained using Remningstorp data and validated using
Krycklan data: Remningstorp data do not include enough to-
pographic variations for reliable training; the retrieval mod-
els perform poorly if only Remningstorp data are used, see
Table VI. Retrieval errors are at minimum 37% (35 tons/ha),
but the variability of the data is large, and the coefficient of
determination is low. In terms of RMSE, model (M4) performs
best here. However, R2-values are low.

In Fig. 7, scatter plots showing estimation results for all
six models are shown. Acquisitions from all three dates and
both headings in Remningstorp were used for training (model
parameters as in Table VII). Retrieval results for all Krycklan
data are shown in the plots, in red for LID-stands and in
black for INS-stands. For all models except (M4), biomass in
Krycklan is underestimated. For (M4), the variability in data
is larger compared to the rest of the models, but the bias is
reduced.

2) Topographic-to-Flat: Here, LID data from the topo-
graphic area of Krycklan, featuring a variety of stands in
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Fig. 7. Comparison of the six evaluated models: training on Remningstorp data.

TABLE VII
PARAMETER VALUES FOR THE SIX TESTED MODELS. TRAINING DATA

CONSISTS OF ALL AVAILABLE LID-STANDS IN RESPECTIVE TEST SITE

COVERED BY EXACTLY ONE IMAGE FROM EACH HEADING AND EACH

DATE, SEE SECTION IV-A. THE PARAMETERS WRITTEN IN

ITALICS WERE FOUND VERY UNCERTAIN (THEIR

UNCERTAINTY INTERVALS INCLUDE ZERO)

different slope conditions, were used for training of the models.
In Table VIII, the resulting RMSE values are shown together
with the coefficient of determination R2. The mean biomass for

Remningstorp INS-stands is 181 tons/ha. It can be observed
that retrieval errors as low as 22% (40 tons/ha) can be achieved
with (M4). Single-polarization models (R1) and (M2), and
model (M3) show all extremely high errors going above 100%
of mean biomass level. This validation scenario shows clearly
the advantage of models (R2), (M1), and (M4). For (M4), the
R2-values are also high (see Table VIII).

In Fig. 8, scatter plots showing estimation results for all
six models are shown. Acquisitions from all four headings
in Krycklan were used for training (model parameters as in
Table VII). Retrieval results for all Remningstorp data are
shown in the plots, in blue for LID-stands and in black for
INS-stands. For all models except (M4) and (R2), biomass
in Remningstorp is overestimated. For (M4), the variability in
data is larger compared to (R2), but the bias (underestimation)
observed above 200 tons/ha is reduced.

E. Error Analysis

Looking at the results presented in the previous three sec-
tions, it can be observed that models (R2), (M1), and (M4) show
best overall performance of the six studied models. Models
(M1) and (M4) have the advantage of having less parame-
ters and showing better results in flat-to-topographic retrieval.
Although (R2) gives less variability (improved precision) in
the higher biomass levels, a loss of sensitivity (reduced accu-
racy, higher bias) can be observed for biomass values above
200 tons/ha. Whereas the precision of a model can be improved
using spatial averaging, it is difficult to improve the accuracy.
Therefore, a limited increase in variability is an acceptable
tradeoff for lower bias.
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TABLE VIII
RESULTS OF TOPOGRAPHIC-TO-FLAT VALIDATION OF MODELS 1–6 IN TERMS OF RMSE (tons/ha) AND R2 (IN PARENTHESES). COLOR

CODING BY RMSE RELATIVE MEAN BIOMASS (181 tons/ha): WHITE FOR 20% AND BELOW, BLACK FOR 100% AND ABOVE

Fig. 8. Comparison of the six evaluated models: Training on Krycklan data.

As mentioned in Section IV-A, all observations used for
training are not completely independent, since several observa-
tions from the same stand but with different imaging geometry
and/or acquisition date are used simultaneously for parameter
estimation. This breach of independence can be observed in
Fig. 4 as clustering of observations from the same stand. This
might induce slightly different parameter estimates compared to
the estimates, which would be obtained if the full dependence
structure of the observations was known. However, since the
majority of pairs of observations are independent, these dif-
ferences are likely to be small. Moreover, small differences in
parameter estimates compared to “true” parameter values are

not of concern in this study. The main focus of this paper is not
the parameter estimation, but rather the performance analysis
and the comparison of different models. The only real concern
is the estimation of confidence intervals, which will be affected
by the presence of unknown correlation between observations.

With the above discussion in mind, some conclusions can
nevertheless be drawn from Table VII containing the estimated
regression parameters. In particular, some of the coefficients for
(R2) are not significantly different from zero (their confidence
intervals include zero). This indicates that the model contains
too many predictors. Note also, that the parameters of model
(M4) are similar for both Remningstorp and Krycklan. This is
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Fig. 9. Three different types of model errors are here plotted versus biomass: bias to the left, standard deviation of the estimation error in the middle, and RMSE
to the right, as defined in (10)–(12). Only models (R2), (M1), and (M4) are compared. Model parameters as in Table VII were used. “Same” means that the model
parameters estimated for the same site were used. “Across” means that the model parameters estimated for the other site were used. LID-stands were used, and
averaging was done in three intervals: 0–100 tons/ha, 100–200 tons/ha, and 200–300 tons/ha. The interval borders are plotted in blue dashed lines. The number of
data points in each group is at least 50. Note: some lines may cover each other.

an indication that the coefficients of this model are stable over
a broad range of forest conditions.

In Fig. 9, bias (mean of the estimation error), standard
deviation of the estimation error, and RMSE are plotted against
biomass for models (R2), (M1), and (M4). These quantities
have been defined in (10)–(12). For this study, the model
parameters were those specified in Table VII. Statistics were
computed for LID-stands in both Remningstorp and Krycklan,
and the averaging was done in three intervals: low biomass
(0–100 tons/ha), medium biomass (100–200 tons/ha), and high
biomass (200–300 tons/ha).

It can be observed that all three models perform almost
equally well when both trained and evaluated in Remningstorp
(solid lines in the top three plots in Fig. 9). Model (R2) shows
higher bias in the high-biomass group (underestimation with
approximately 40 tons/ha), but the variability is quite small
(standard deviation up to 30 tons/ha). When training and val-
idation are both done in Krycklan (solid lines in the bottom
three plots in Fig. 9), one can observe a strong underestimation
occurring for stands with biomass above 100 tons/ha and a high
variability. The origin of this bias can probably be related to the
nonuniform biomass-slope distribution mentioned earlier and
shown in Fig. 6, but a clear conclusion is difficult to be made
as the number of independent data points is low. Also, the fact
that none of the models compensates for variability with angle
v contributes to the observed large variability. All three models
perform similarly.

It is during across-site validation that (M4) proves itself
better than the other two models. Lower bias is observed when
training on Remningstorp and applying to Krycklan (dashed

lines in the bottom three plots in Fig. 9). In the opposite case,
(R2) shows lower bias for low-biomass stands, but higher in the
two other groups (dashed lines in the top three plots in Fig. 9).
Although (M4) shows in some cases slightly higher standard
deviation of residuals, this effect can be reduced by spatial
averaging. Bias is more difficult to reduce and should thus be
kept as low as possible. Altogether, (M4) is observed as the best
of the six models examined in this paper. Note, that in Krycklan,
there is a lack of stands with high biomass and low slopes,
whereas in Remningstorp these types of stands are common. An
extrapolation is made for such stands when the model (M4) is
trained in Krycklan and evaluated in Remningstorp. The exact
influence of this effect on the retrieval is unclear.

F. Biomass Mapping Performance Analysis

In order to evaluate mapping performance of the new model,
biomass maps were created from SAR images using (M4). In
Fig. 10, a set of biomass maps is shown. To the left, biomass
maps based on lidar scanning are shown. In the middle and to
the right, two biomass maps extracted from SAR using (M4)
are shown. For both Remningstorp and Krycklan, the same
SAR images as used for training were used (those described in
Section IV-A, six images for Remningstorp and four images for
Krycklan). Geocoded images with pixel size 2 m × 2 m were
first filtered using an average filter with a 5 × 5 window to
match the resolution of the lidar-based biomass maps. Next, the
filtered SAR images were re-sampled using linear interpolation
to the same grid as the lidar-based biomass maps (10 m ×
10 m). Thereafter, all biomass maps were filtered with a 7 × 7
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Fig. 10. Extracted biomass maps for Remningstorp and Krycklan. Biomass maps are quantized in intervals of 25 tons/ha. Model (M4) was used to create the
maps. For Remningstorp, the north direction is upwards. All Krycklan maps have been rotated by 45◦ counterclockwise for better viewing and the north east
direction is upwards. In all images, the resolution is 70 m × 70 m, and the pixel size is 10 m × 10 m. The size of the imaged region is 3700 m × 1130 m for
Remningstorp and 3450 m × 3270 m for Krycklan. The scales are the same in both x- and y-direction. Three regions of interest discussed in Section IV-F are also
marked.

average filter in order to reduce resolution to approximately
70 m × 70 m to match the size of the smallest stand in the
data sets used for training (0.5 ha). Biomass maps were then
produced from all SAR images and averaged. In Fig. 10, only
the regions covered by all acquisitions in the respective test sites
are shown. The parameters used for map creation can be found
in Table VII.

The SAR-based biomass maps show good qualitative agree-
ment with the lidar-based maps. However, in some regions,
there are distinct differences between the maps. Three such
examples are marked with black contours in Fig. 10.

In the large, irregular region “A” in the central-left part of the
Remningstorp map, an overestimation with 100–150 tons/ha

is observed. One INS-stand (here called #5, biomass:
167 tons/ha) is located within this region. A careful cross-check
with reference in-situ and lidar data does not indicate any major
issues related to the biomass map itself. However, according
to Table 8.1 in [44], 50% of all trees in stand #5 are pines,
which contributes to 95% of the total biomass in this stand.
The remaining 5% is concentrated in a layer of understory
vegetation. This fact has been observed during field visits, and
it can also be seen in the lidar height data. The understory layer
makes a large contribution to the HV backscatter through the
increased number of vegetation scatterers. An investigation in
the original SAR data shows that HV is more affected by this
vegetation layer than HH.
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Fig. 11. Probability distributions for the relative difference between the lidar maps and the maps created using (M4) and SAR data are plotted here. Four curves
are plotted, one for each biomass group (0–100 tons/ha, 100–200 tons/ha, and above 200 tons/ha), and one for all biomass levels. The distribution of the different
groups among the image pixels is shown as percentage values in the upper left corner of each plot. In parentheses, the corresponding values for the training data
are shown.

Fig. 12. Cumulative distributions for the relative difference between the lidar maps and the maps created using (M4) and SAR data are plotted here. Four curves
are plotted, one for each biomass group (0–100 tons/ha, 100–200 tons/ha, and above 200 tons/ha), and one for all biomass levels. The distribution of the different
groups among the image pixels are shown as percentage values in the upper left corner of each plot. In parentheses, the corresponding values for the training data
are shown.

In the oblong region “B,” a disagreement of the order
of 100–150 tons/ha between lidar and SAR biomass maps
is observed in Fig. 10. One forest stand is located within
region “B.” This stand is shown in [44, Fig. 6.17] as #11
(biomass: 273 tons/ha, not used in this study due to its small
size, 20 m × 50 m). An investigation of the lidar height
data shows that the high-biomass area containing stand #11
is small and surrounded by sparser forest with lower trees.

Therefore, filtering of the lidar map will lead to underesti-
mation of biomass around stand #11. Also, the DEM shows,
that region “B” is located on a slope, which increases the
HV backscatter. This leads to an overestimation of biomass
in the SAR-based biomass map. Summarizing, the disagree-
ment between lidar and SAR in region “B” is both due to an
overestimation in the SAR map, and an underestimation in the
lidar map.
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Also, in region “C,” another disagreement is observed. The
region consists of a group of tall trees situated on plane
ground, with virtually no forest between them and the SAR.
This increases the difference between HH- and VV-backscatter
through the double-bounce effect, thus increasing the ratio.
Moreover, smoothing of biomass map decreases the reference
biomass level in a similar way as in region “B.”

In Figs. 11 and 12, histograms and cumulative distributions
for the relative error defined in (14) are shown. Here, the lidar-
based biomass map was used as Bref , and the estimated SAR
biomass maps were used as B̂. The data have been divided
in three biomass groups: 0–100 tons/ha, 100–200 tons/ha, and
200 tons/ha and above. In the upper left corner of each subplot,
the size of each group relative the total number of pixels in
percent is shown (in parentheses, corresponding percentage of
the training data in each group is shown). In black dashed
lines, the corresponding distributions for the whole image are
plotted.

In general, between 35 and 50% of all pixels are estimated
with relative error smaller than 25%. In Remningstorp, par-
ticularly good estimation results are obtained for pixels with
lidar biomass higher than 200 tons/ha (80–90% pixels showed
relative error smaller than 25%). There is also a group of pixels
with low lidar biomass, for which biomass is overestimated
with more than 100%. However, in terms of biomass error
(measured in tons per hectare), this overestimation is not large.

In Krycklan, a general underestimation is observed for pix-
els with biomass larger than 100 tons/ha, particularly when
Remningstorp-based parameters are used. However, since only
12% of all pixels in the Krycklan map correspond to lidar
biomass lower than 100 tons/ha, and the topography in Rem-
ningstorp is not strong, these results are less conclusive.

V. SUMMARY AND CONCLUSIONS

A new biomass retrieval model for boreal forest using polari-
metric P-band SAR backscatter is presented in this paper. The
model is based on two main SAR quantities: the HV backscatter
and the HH/VV backscatter ratio, and it also includes a first-
order topographic correction, the ground slope angle u.

The paper is based on analysis of data from two airborne
P-band SAR campaigns, BioSAR 2007 and 2008, conducted in
the two Swedish test sites Remningstorp and Krycklan, sepa-
rated by 720 km. The examined stand-level biomass interval is
0–300 tons/ha and the surface slope goes up to 19◦, measured
on a 50 m × 50 m posting DEM. Only forest stands with areas
greater than 0.5 ha are used in this work. An average difference
between the data from Remningstorp and Krycklan is observed
in all polarization channels, and more work is needed to fully
understand and model it in terms of seasonal, topographic, and
forest structure differences.

Compared to previously published models, the new model
shows less bias induced by temporal change and topographic
variability. Also, it gives reliable biomass retrieval results dur-
ing across-site validation, that is when biomass estimation in
one test site is evaluated using a model developed using data
from the other test site.

First, all relevant models were tested on data sets coming
from Remningstorp, acquired at three occasions during the
spring of 2007, each separated by roughly one month. This
test showed that the use of multiple polarizations significantly
improves the performance. Also, the use of the HH/VV ratio
instead of HH and VV channels separately simplifies the model
without sacrificing any performance.

The models were also tested for bias due to topographic
variability using SAR data acquired from different directions
in topographic terrain in Krycklan. The new model gave errors
of 27–40 tons/ha (corresponding to 28–42% of the the mean
biomass in Krycklan, 95 tons/ha), whereas all the other models
gave comparable or worse results. The results of this test were
not conclusive, due to non-uniform biomass-slope distribution
in the training data.

Thereafter, the across-site retrieval performance was evalu-
ated. The test site used for training was thus distinctly different
from the test site used for validation. With model parameters
estimated on Krycklan data, biomass in Remningstorp could
be estimated with RMSE of 40–59 tons/ha, or 22–33% of
the mean biomass in Remningstorp (181 tons/ha) of the mean
biomass. The other models produced errors that were at least
50% higher. In the inverse scenario, the Krycklan site was not
well represented in the training data set (too small topographic
variability in Remningstorp), and errors of 35–51 tons/ha were
measured (37–54% of the mean biomass in Krycklan). In terms
of RMSE, the new model showed better results than the other
models. The coefficient of determination R2 was, however, low,
and it was concluded that the training set was not sufficiently
representative in terms of ground surface slopes.

Last, biomass maps estimated using the new model with
two parameter sets (one for each test site) were compared to
lidar-based biomass maps. The biomass maps were created by
averaging biomass estimates from six SAR images in Rem-
ningstorp and four SAR images in Krycklan. A good qualitative
agreement was observed between the lidar-based biomass maps
and the SAR-based biomass maps. However, in some regions
biomass was overestimated by SAR, which could be explained
based on basic scattering properties of forest in connection to
observations made in field and in the lidar data. Between 35 and
45% of all pixels in the maps were estimated with relative dif-
ference between the maps smaller than 25%. In Remningstorp,
particularly good agreement was obtained for pixels with lidar-
estimated biomass higher than 200 tons/ha (80–90% pixels
showed relative difference smaller than 25%). In Krycklan, a
general underestimation was observed for pixels with biomass
larger than 100 tons/ha, particularly when Remningstorp-based
parameters were used. However, since only 12% of all pixels
in the Krycklan map correspond to lidar biomass lower than
100 tons/ha, and the topography in Remningstorp is not strong,
these results are not conclusive.
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Abstract: Above-ground forest biomass is a significant variable in the terrestrial carbon 

budget, but is still estimated with relatively large uncertainty. Remote sensing methods can 

improve the characterization of the spatial distribution and estimation accuracy of biomass; 

in this respect, it is important to examine the potential offered by new sensors. To assess 

the contribution of the TanDEM-X mission, eighteen interferometric Synthetic Aperture 

Radar (SAR) image pairs acquired over the hemi-boreal test site of Remningstorp in 

Sweden were investigated. Three models were used for interpretation of TanDEM-X 

signatures and above-ground biomass retrieval: Interferometric Water Cloud Model 

(IWCM), Random Volume over Ground (RVoG) model, and a simple model based on 

penetration depth (PD). All use an allometric expression to relate above-ground biomass to 

forest height measured by TanDEM-X. The retrieval was assessed on 201 forest stands with 

a minimum size of 1 ha, and ranging from 6 to 267 Mg/ha (mean biomass of 105 Mg/ha) 

equally divided into a model training dataset and a validation test dataset. Biomass 

retrieved using the IWCM resulted in a Root Mean Square Error (RMSE) between 17% 
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and 33%, depending on acquisition date and image acquisition geometry (angle of 

incidence, interferometric baseline, and orbit type). The RMSE in the case of the RVoG 

and the PD models were slightly higher. A multitemporal estimate of the above-ground 

biomass using all eighteen acquisitions resulted in an RMSE of 16% with R2 = 0.93. These 

results prove the capability of TanDEM-X interferometric data to estimate forest 

aboveground biomass in the boreal zone. 

Keywords: TanDEM-X; InSAR; forestry; boreal; biomass estimation; model-based; allometry 

 

1. Introduction 

Forest above-ground dry biomass (AGB, herewith simply referred to as biomass) is an important 

variable for the global carbon budget, not only due to the uptake of carbon dioxide in the process of 

photosynthesis, but also because forests store huge amounts of carbon, which are eventually released 

into the atmosphere following a disturbance [1]. Accurate and timely mapping of forest AGB is 

therefore crucial to support carbon cycle modeling. Traditional methods based on forest inventories 

and aerial photography, and more recently, LiDAR campaigns, give accurate estimates of AGB; 

however, such methods are expensive and become inefficient whenever frequent and large-scale 

mapping is needed. Therefore, there is a need for development of alternative methods for frequent and 

large-scale biomass mapping [2]. 

One of the more promising techniques for above-ground dry biomass mapping is Synthetic 

Aperture Radar (SAR), cf. [3]. Being an active sensor, radar is independent of weather and external 

illumination. Spaceborne SAR missions currently in operation are characterized by an image resolution 

on the order of meters. In addition, interferometric SAR, InSAR, offers the possibility to exploit two 

further observables besides the radar backscatter, namely the coherence and the interferometric phase. 

These are affected by the forest structure and, thus, are related to forest variables such as tree height, 

and stem volume or AGB. In a single-pass acquisition scenario, the association between InSAR 

observables and forest variables is expected to be maximized because temporal decorrelation can be 

assumed to be negligible. Experimental evidence on the suitability of single-pass InSAR to estimate 

forest variables at X-band (wavelength of approximately 3 cm) was provided by data acquired by 

airborne sensors [4–6], and during the Shuttle Radar Topography Mission (SRTM) [7]. 

In June 2010, the TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) satellite 

was launched. Together with the almost identical twin-satellite TerraSAR-X (launched in June 2007), 

the first satellite-based single-pass SAR interferometer was formed. In the bistatic mode of the 

TanDEM-X mission (consisting of the TanDEM-X and TerraSAR-X satellites), only one satellite is 

used for transmission while both satellites are used for reception. For simplicity, we will refer to this 

mission as the TDM mission. In TDM data, temporal decorrelation is limited to a minimum because of 

the small along-track baseline between the sensors. The primary objective of TDM is to obtain a global 

Digital Elevation Model (DEM) with an absolute height accuracy better than 10 m and an equatorial 

spatial resolution of 12 m [8]. Because of the limited penetration of microwaves into the canopy,  

X-band interferograms over forests are characterized by an elevation offset which is dependent on 
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forest canopy height and density [9]. This offset suggests exploiting TDM imagery to estimate tree 

height although a reference for the ground elevation is needed. Since X-band microwaves do not 

significantly penetrate the closed canopy of a dense forest, a Digital Terrain Model (DTM) for the ground 

surface needs to be provided by some other, independent method, for example P-band SAR [10], or 

LiDAR [6,7]. Besides forest height estimation, retrieval of above-ground dry biomass was also 

investigated in some studies. In [10], a Root Mean Square Error (RMSE) of 46.1 Mg/ha (biomass 

range up to ≈ 360 Mg/ha) was obtained for biomass in a tropical forest using airborne SAR in X- and 

P-band, and in [7] RMSE = 19% was obtained using SRTM in X-band.  

The objective of this study was to develop and assess estimation methods based on models linking 

X-band InSAR observations to forest biomass. For this, single polarized (VV), bistatic interferometric 

TanDEM-X data acquired between June 2011 and August 2012 over Remningstorp, a hemi-boreal test 

site situated in southern Sweden, were used. Three InSAR models were employed and evaluated: 

Interferometric Water Cloud Model (IWCM) [11–14], Random Volume over Ground model  

(RVoG) [15–17] and a simple model based on the penetration depth (PD) of X-band microwaves. As 

reference, biomass estimates derived from LiDAR scanning data acquired during the BioSAR 2010 

campaign [18,19], performed within the BIOMASS phase-A study [20] were used. By means of 201 

forest stands equally divided into a training and a validation dataset, properties of the model parameters 

were determined and biomass retrieval accuracy for the different models was quantified. 

2. Test Site and Datasets 

Remningstorp (5830′N, 1340′E) is an estate with 1,200 ha productive forest area in the hemi-boreal 

zone, which is the transition between the boreal and the temperate zone [21]. Forest species consist 

primarily of Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and birch 

(Betula spp.). The test site is fairly flat with elevations ranging from 120 m to 145 m above sea level. 

2.1. Field Observations 

Field data used for this study were collected in 2010 [19] and consisted of 212 field plots with 10 m 

radius allocated over the estate. The survey assessed the stem volume, tree height, diameter at breast 

height (i.e., 1.3 m above ground level), stem density, tree species composition based on proportion of 

total stem volume, and above-ground dry biomass, including stem, bark, branches and needles, but 

excluding stump and roots. Biomass was expressed in Mg of dry mass per hectare. The field survey 

and the biomass estimation for the field plots was carried out according to the Heureka forestry 

decision support system [22] with functions described in [23]. In addition, seven 80 m × 80 m field 

plots were inventoried in situ through single tree measurements (including all trees with diameter at 

breast height, DBH > 0.05 m). The measurements made on tree level included GPS position, DBH, 

species and height. Biomass and stem volume (including the stem above stump, and bark, and 

expressed in m3/ha) were estimated using functions developed in [24] and [25], respectively.  

The biomass for the 212 field plots was then related to LiDAR metrics by least-squares regression 

in line with similar studies, e.g., [26]. The LiDAR data were collected with a density of 69 returns/m2 

on average. The LiDAR metrics selected to establish the relationship with biomass were chosen based 

on studies of correlations and residual plots and included for example height percentiles of LiDAR 
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returns, vegetation densities from proportions of LiDAR returns, and tree species stratification 

information. The final model was tested for overfitting, and the coefficient of determination, R2, 

between the biomass estimated for the 212 field plots and the biomass derived from the corresponding 

LiDAR metrics, was estimated to 0.81. Spatially explicit estimates of biomass were then derived from 

the function linking the LiDAR metrics to biomass. The LiDAR-based biomass was obtained for the 

entire forest estate and represented the reference biomass dataset for this study. The accuracy of the 

LiDAR-based estimates of biomass was determined by comparing it to the biomass for the seven  

80 m × 80 m field plots which gave a RMSE of 12.7% [19].  

The Remningstorp estate was divided into 665 delineated polygons, of which 562 consisted of 

forest stands, i.e., areas of homogeneous tree cover, species composition and canopy structure. The 

remaining 103 polygons consisted of open fields, pastures, private lots, water, etc. The 562 forest 

stands, of which 201 stands were at least 1 ha large, were characterized by full LiDAR coverage and 

did not experience major forest cover changes between the LiDAR and the TDM acquisitions. The 

digital map with the forest stand boundaries was eroded with a 10-m buffer zone around the boundary 

of each stand to reduce border effects on the evaluation of the TDM data. The biomass of the 201 

stands was between 6 and 267 Mg/ha with a mean of 105 Mg/ha. Figure 1 illustrates the distribution of 

stand sizes and biomass for the 201 forest stands. More than 90% of the forest stands were smaller than 

5 ha (Figure 1a). The biomass presented an almost uniform distribution up to 150 Mg/ha; several 

stands were characterized by biomass above 200 Mg/ha (Figure 1b).  

Figure 1. Distribution of forest stand size (a) and biomass (b) for the 201 forest stands  1 ha 

at the test site in Remningstorp. 

 
(a) (b) 

Some of the LiDAR metrics and the LiDAR-based biomass for the 201 forest stands were used to 

support the interpretation of the TDM interferometric signatures and to support the modeling phase 

relating the interferometric data to biomass (see Section 3). In Figure 2a, stand-level averages of the 

95th percentile of LiDAR return values above a height threshold of 1.0 m or 10% of the maximum 

height (H95) have been plotted against the LiDAR-based biomass to assess the validity of the 

allometric function to be then used in the modeling phase, see Equation (3). Vegetation ratio derived 

from the LiDAR data [19], i.e., the ratio of LiDAR return values above a height threshold of 5.0 m and 

the total number of returns, provide information on canopy closure and can be considered as proxy for 

a similar parameter used in modeling, namely the area-fill factor (see Section 3). To understand the 
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relationship between canopy closure and biomass, Figure 2b shows the relationship between vegetation 

ratio and the LiDAR-based biomass for the 201 forest stands. Figure 2a,b shows strong correlations 

between the illustrated forest variables, indicating the suitability of empirical relationships to be 

implemented during the modeling phase of the interferometric signatures to express these solely as a 

function of forest biomass. 

Figure 2. (a) Stand-wise values of LiDAR heights (H95) versus LiDAR-based biomass 

and an allometric equation relating basal-area-weighted mean height to biomass, see 

Equation (3); (b) LiDAR vegetation ratio versus LiDAR-based biomass, and (c) biomass 

versus stem volume for the seven 80 m × 80 m plots with single tree measurements. 

 
(a) (b) (c) 

The in situ information on biomass and stem volume from the seven 80 m × 80 m forest inventory 

plots was used to derive a linear equation linking the biomass, B, and the stem volume, V. In Equation (1), 

BEF represents a biomass expansion factor (expanding to include branches and needles as well as stem 

and bark) which was estimated to be 0.512 Mg/m3 with R2 = 0.97, cf. Figure 2c, 

ܤ ൌ ܨܧܤ · ܸ (1)

Although the BEF was estimated using a small dataset of samples and the relationship between biomass 

and stem volume is in theory dependent on tree species, age and local conditions, cf. [27] and [28], it was 

assumed that a single and approximate value was sufficient for the purpose of this investigation. 

Furthermore, an allometric relationship between basal-area-weighted mean height, h, and stem 

volume, V, was considered 

h(V) = (2.44 V)0.46 (2)

Equation (2) was derived using measurements from test sites in Sweden and Finland and verified by 

means of 4,188 randomly chosen National Forest Inventory field plots located in different regions of 

Sweden [11,13]. Combining Equations (1) and (2), an allometric relationship between biomass and 

height was obtained: 

B(h) = 0.21 h2.17 (3)

illustrated in Figure 2a. Although stem volume and biomass also depend on other forest variables, for 

example tree species and tree number density, it was shown in [29] using a plant structure model that 

biomass can generally be modeled from height using the same functional form as Equation (3), where 

the exponent is determined by a scaling parameter related to species and thinning practices. 
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The allometric relationship, Equation (3), is not entirely optimal for the Remningstorp data, cf. 

Figure 2a, but was still used due to its general nature. The aim of the allometric relationship is to 

decrease the number of forest variables in the models relating these to TDM observables and have 

them expressed purely as functions of biomass. 

2.2. TanDEM-X SAR Dataset 

A large number of TanDEM-X InSAR acquisitions were available for the Remningstorp test site 

(Table 1). In Table 1, the stand-level mean values of the Height of Ambiguity (HOA) and the along-track 

baseline (ATB) are shown. HOA is the height interval corresponding to a phase difference of 2; it is a 

measure for the sensitivity of the InSAR phase to elevation and is inversely proportional to the 

perpendicular component of the across-track baseline. ATB is the distance between the satellites along 

track. Since each pixel in the monostatic active and the bistatic passive image is focused in azimuth at 

its Zero Doppler Time [30] the two images can be looked as monostatic and ATB provides a measure 

for temporal decorrelation [31]. 

Table 1. TanDEM-X InSAR acquisitions and weather conditions at the time of image 

acquisition (HOA = Height of Ambiguity, ATB = Along-Track Baseline). The sign of 

HOA depends on the satellite positions, but has no relevance for the results in this paper. 

Date 
HOA  

(m) 

ATB  

(m) 

Incidence  

Angle 

Temperature  

(C) 

Wind Speed  

(m/s) 

Precipitation  

(mm) 

2011-06-04 49 110 41 24 2 0 

2011-11-23 −185 4 34 5 3 1.2 

2011-12-26 −178 64 34 6 5 0 

2012-01-17 −172 −1 34 −2 1 0 

2012-01-28 −182 7 34 −3 2 0 

2012-02-01 80 267 41 −4 1 0.2 

2012-02-08 −179 29 34 −3 1 0 

2012-02-12 −79 −244 41 −3 1 0.2 

2012-02-19 −186 −8 34 1 6 3.4 

2012-02-23 79 232 41 3 3 0 

2012-03-01 −186 −11 34 5 4 0 

2012-03-12 −187 −11 34 4 2 0 

2012-03-23 −183 14 34 −1 0 0 

2012-05-28 349 262 34 15 2 1.3 

2012-07-22 339 262 34 14 3 4.1 

2012-08-02 315 233 34 15 3 0.6 

2012-08-13 358 229 34 14 0 0 

2012-08-24 301 208 34 13 3 0.2 

TDM images were provided by German Aerospace Center (DLR) in a co-registered single-look 

complex (SLC) format with common spectral filtering applied during pre-processing. Interferometric 

processing of TanDEM-X data were done with a Matlab-based algorithm [32] developed specially for 

interferometric processing of TanDEM-X data and based on [30]. The first step of interferometric 

processing consists of interferogram flattening for curved Earth and surface elevation. For this, InSAR 
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phase was simulated using an airborne LiDAR DTM with a spatial resolution of 2 m and mean height 

error lower than 0.5 m. The DTM was acquired by the Swedish National Land Survey (Lantmäteriet) 

within an ongoing nationwide LiDAR scanning campaign. The DTM was interpolated to range-azimuth 

coordinates (radar geometry) using satellite state vectors and look geometry information provided in 

the metadata of the images. For each stand, a complex average of all pixels within the stand was 

computed, and the corresponding phase was converted to elevation (in the following referred to as 

TDM height) by a multiplication with HOA/2π. Absolute height calibration was performed through the 

subtraction of the mean TDM height for non-forested stands (at least 0.5 ha in size and scattered over 

the entire estate) from the TDM heights. For a few stands, TDM heights were slightly below the mean 

TDM height for non-forest areas. In such cases, the absolute TDM height was set equal to zero. This 

applied also for one stand (2012-05-28) with an offset of −1.5 m, probably due to the large HOA, 

which was 349 m. 

Among the stands, one stand (ID = 189, 1.42 ha, 25.1 Mg/ha) presented TDM heights from −11.7 m 

to 36.0 m. This stand also had a low coherence. High-resolution LiDAR data shows, that the stand is 

highly irregular and consists of several disjoint parts of high trees alternating with low vegetation or open 

ground. Such a stand is easily detected by comparing TDM observations in a multitemporal approach. In 

the following the TDM height of this stand has been put to zero, i.e., the biomass will be assumed zero. 

The temporal consistency of TDM heights was high (Figure 3, upper row), in particular between 

acquisitions with similar HOA (R2 = 0.99 for 2012-02-01 and 2012-02-23, for example). When 

acquisitions with different HOA were compared, R2 tended to decrease with increasing HOA for one 

or both of the acquisitions. Almost the opposite applied for coherence but then with much lower R2. 

The dynamic range of coherence was found to decrease with increasing HOA. A large HOA 

corresponds to a short perpendicular baseline and thus to low volume decorrelation. 

Figure 3. Temporal consistency visualized by means of scatterplots of stand-wise TDM 

height (TDM h, upper row) and TDM coherence (TDM , lower row). HOA = 80 m for 

2012-02-01, HOA = −185 m for 2011-11-23, and HOA = 358 m for 2012-08-13. 
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2.3. Meteorological Data 

Table 1 lists temperature and wind speed measured within one hour of the satellite overpass at the 

closest official meteorological station, Hällum, situated 23 km from Remningstorp. Precipitation in 

Table 1 was recorded in Remningstorp for the date of acquisition. For the four image pairs with  

|HOA| ≤ 80 m showing the strongest agreement between TDM heights, the history of temperature and 

snow depth are further illustrated in Figure 4 in order to support the interpretation of the 

measurements. The history of the maximal, mean, and minimal temperatures has been plotted. For 

three of the acquisitions in Figure 4, temperature change for the six preceding days is shown. For the 

fourth acquisition (2012-02-23), data from two preceding weeks are shown to illustrate the more 

complex situation. 

Figure 4. History of temperature for the Remningstorp test site prior to four TDM 

acquisitions with |HOA|  80 m. The units on the x- and y-axis are days and temperature 

(C), respectively. The snow layer in cm is dotted for the acquisition dates 2012-02-12 and 

2012-02-23. 

 

3. Interferometric Forest Models 

The models, used for interpretation of TDM observations and to explain their relation to forest 

height or biomass, were selected to be simple enough in order to make inversion possible. This means, 

that the forest properties can only be described by a few parameters. The Interferometric Water Cloud 

Model, the Random Volume over Ground model, as well as the simple model based on the penetration 

depth presented below fulfilled these requirements. 

3.1. Interferometric Water Cloud Model 

The Interferometric Water Cloud Model, IWCM, is a model for the complex coherence of a forest. 

The IWCM was introduced to explain the coherence of forest at C-band [11,12,14]. The model 

assumes that the medium, characterized by a certain forest height, h, and stem volume, V, can be 

described by a random vegetation layer like the Water Cloud Model [33], with uniform scatterer 

density but generalized to include gaps. The proportion of the area with vegetation relative the total 

area is denoted as the area-fill, . Recently, and in agreement with IWCM, it was shown using 

observations of the spatial scattering spectrum of TanDEM-X data over tropical forests that forests 

cannot be modeled as a layered medium, but by a model with gaps or random scattering “clouds” [34]. 

The attenuation factor in the vegetation layer is described by , representing the mean attenuation 

for the idealized vegetation layer (either vegetation or no vegetation), and is a function of, for example, 
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the dielectric constant of the scatterers. According to [35], the forest backscatter, for, can also be 

described by an empirical, exponential stem volume dependence characterized by β, as demonstrated 

by scatterometer measurements at X- and C-band. There are then two alternative expressions for 

the backscatter: 

ߪ
 ൌ ߪൣߟ ݁ିఈ  ௩ߪ ሺ1 െ ݁ିఈሻ൧  ሺ1 െ ߪሻߟ ൌ ߪ ݁ିఉ  ௩ߪ ൫1 െ ݁ିఉ൯ (4)

In Equation (5), ߪ  represents the ground backscatter and ߪ௩  represents s the vegetation 

layer backscatter.  

The complex expression for the coherence of this random volume with gaps is then described by 

each of the independent scattering parts weighted by system and temporal decorrelation, the product of 

which will be represented by the coherence parameters gr and veg, for the ground and vegetation parts, 

respectively. For the vegetated part there is also volume decorrelation, vol, related to the forest height. 

The complex coherence (assuming the phase of the ground surface has been compensated for) is then 

given by: 

ߛ ൌ
൛ߛൣߟߪ ݁ିఈ  ௩ߪ௩ߛ௩ߛ ሺ1 െ ݁ିఈሻ൧  ሺ1ߛ െ ߪሻߟ  ൟ

ߪ


ൌ
ߪߛ ݁ିఉ  ௩ߪ௩ߛ௩ߛ ൫1 െ ݁ିఉ൯

ߪ
  

(5)

For the two expressions in Equations (4) and (5) to agree, a requirement on the area-fill factor  is 

given by a relation between  and β according to: 

ሺܸሻ ൌ
1 െ ݁ିఉ

1 െ ݁ିఈሺሻ
 (6)

with   1 when V  . According to Equation (6), β can be described by the area-fill , the 

attenuation , and h(V), i.e., by the vegetation density and attenuation through the vegetation. h and V 

will, whenever needed, be related through the allometric relationship in Equation (2), i.e., h(V) 

represents the basal-area-weighted mean forest height. Equation (4) shows that β characterizes the 

transition from dominant ground scattering to dominant vegetation scattering. 

If the variation of scattering with height is only determined by the attenuation, the volume 

decorrelation is determined by, [11]: 

௩ߛ ൌ
 ݁ିఈሺି௭´ሻ · ݁ିሺሻ´dz´



 ݁ିఈሺି௭´ሻ

 dz´

ൌ
ߙ

ߙ െ ሻܤሺܭ݆
݁ିሺሻ െ ݁ିఈ

1 െ ݁ିఈ
 (7)

For the TanDEM-X bistatic mode K(Bn) = 2Bn/Rsin = 2/HOA, where Bn is the component of the 

baseline perpendicular to the line of sight,  is the wavelength, R is the slant range distance, and  is 

the incidence angle. 

Often an extinction coefficient, eff, is used to define the attenuation through a homogeneous 

vegetation layer without gaps. From Equation (5), eff is obtained by the definition 
ଶሺሻ

௦ఏ
ൌ  .ܸߚ

With h expressed by means of the allometric expression in Equation (2) and β expressed by Equation (6), 

it is obtained: 

119



Remote Sens. 2013, 5 5583 

 

 

ሺܸሻ ൌ െ
ߠݏܿ
2݄ሺܸሻ

݈݊ ሾ1 െ ሺܸሻ൫1 െ ݁ିఈሺሻ൯ሿ (8)

The expression for eff in Equation (8) illustrates how the extinction coefficient is dependent on stem 

volume, forest height, area-fill, as well as temperature, humidity, etc., through the attenuation 

coefficient . For dense vegetation layers, (V) = 1 and eff(V) tends to  cos /2. 

Equation (4) can be rewritten as 

ߛ ൌ
௩ߛ௩ߛ  ݉ߛ

1 ݉
 (9)

where 

݉ ൌ
ߪ ݁ିఉ

௩ߪ ሺ1 െ ݁ିఉሻ
 (10)

is the ratio describing the relative amount of ground scattering compared to volume scattering  

(ground-to-volume ratio). 

The TDM coherence, , and the estimated height, zest are defined as 

ߛ ൌ |ߛ| ௦௧ݖ  ൌ െ ሾఊሿ

ଶగ
(11) ܣܱܪ

where arg stands for argument of the complex-valued term within brackets. 

The IWCM has been used for C-band data in order to derive stem volume from coherence, and it 

was found to be suitable for the retrieval of stem volume at several test sites in Sweden and Finland. 

For the one-day repeat-pass interval of the European Remote Sensing ERS-1/2 mission, the coherence 

for stable winter conditions was found to be useful for stem volume estimation [13,14,36,37], while the 

interferometric phase height was found unstable [38]. As will be illustrated below, it is instead 

primarily the interferometric phase height which has the highest sensitivity to biomass for TanDEM-X. 

3.2. Random Volume over Ground Model 

The Random Volume over Ground, RVoG, was introduced for studies of polarimetric SAR 

interferometry, PolInSAR, [17]. The model can be obtained by excluding gaps in the analysis of IWCM, 
which means one less unknown parameter. This means that  ؠ 1, βV = h, and ߢ ൌ  is the 2/ߠݏܿߙ

extinction coefficient. The ground-to-volume ratio m then changes to 

݉ ൌ
ߪ ݁ିఈ

௩ߪ ሺ1 െ ݁ିఈሻ
 (11)

and the expression in Equation (9) for the complex coherence is used for cases when the temporal 

decorrelation can be neglected. RVoG has shown to be useful in PolInSAR height estimation without 

the need of training stands as long as the extinction coefficient can be assumed polarization-independent 

and a polarization combination with no ground contribution can be found [5,16]. RVoG was also used 

for the single polarized case, e.g., [5,6]. When m can be assumed negligible and a lidar DTM is 

available, the tree height and the extinction coefficient can be estimated without training stands. 

Biomass can then be estimated by means of an allometric relationship [39,40]. With training stands, 

the RVoG model parameters and model properties can be studied in detail. 
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3.3. Penetration Depth Model 

If a medium is dense and attenuation is such that ground scattering is negligible, i.e., exp[-h] << 1, 

then m ≈ 0 and only volume decorrelation remains, if veg = 1, see Equations (7), (9), and (12): 

௩ߛ ൌ
ߙ

ߙ െ ሻܤሺܭ݆
݁ିሺሻ െ ݁ିఈ

1 െ ݁ିఈ
ൎ ݁ିሺሻቂି

ଵ
ఈቃ (12)

If K(Bn)/ << 1 then the estimated interferometric phase height is approximated as h − 1/ , while 

if K(Bn)/ ≈ 1 a correction has to be introduced depending on  and HOA, and h − 1/eff represents the 

interferometric phase height. Setting h(V) – 1/eff equal to the TDM height gives a simple model for 

the TDM height, ்ܪெ. This model is denoted as PD. Neglecting that the approximations made are not 

valid for small biomass, the biomass could be estimated from 

ܤ ൌ 0.21ሺ்ܪெ  ߙ
ିଵ ሻଶ.ଵ (13)

3.4. Estimation of Model Parameters 

The IWCM contains six unknown parameters (gr°, veg°, gr, veg, , and β) that need to be 

determined (Table 2). The traditional estimation approach consists of a least-squares regression to 

reference data of the forest variable in the model and corresponding observations of backscatter and 

complex coherence. This is referred to as “training” the model. The models in Equations (4) and (5) 

assumed to be formulated as dependent on stem volume, V, have been transformed in this study to a 

dependence on biomass by means of Equation (1). The allometric expression in Equation (2), h(V), and 

the BEF are assumed to be known a priori. In addition, there is a need for knowledge of the ground 

phase or, in an equivalent manner, of the TDM height for non-forest areas nearby the test site. All 

model parameters are estimated by fitting the IWCM to the sets of backscatter, coherence and InSAR 

height observations from the TanDEM-X dataset and the corresponding LiDAR-based values of 

biomass forming a training dataset. In addition, the estimates of vegetation ratio, which mimic the 

area-fill factor are used. It should be noted that the area-fill does not correspond exactly to the LiDAR 

measured vegetation ratio. 1- represents the fraction of gaps in the vegetation, and the gaps have to be 

larger for microwaves with longer wavelengths than for the LiDAR to propagate freely. The dielectric 

properties of the surrounding vegetation will also affect the wave propagation and transmission. 

Consequently, the area-fill can be expected to be higher than the LiDAR-based vegetation ratio and 

also vary with environmental conditions. 

Table 2. Input and output of the model training phase for the three models. 

Model Input Output 

IWCM 
Parameters of satellite look geometry, DTM, h(B), BEF, biomass , 

°TDM, TDM and hTDM of training stands 
ߪ , ௩ߪ , gr, veg, , β,  

RVoG 
Parameters of satellite look geometry, DTM, h(B), BEF, biomass , 

°TDM, TDM and hTDM of training stands 
ߪ , ௩ߪ , gr, veg, ,  

PD DTM, h(B), biomass and hTDM of training stands eff,  
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In the RVoG model, vegetation gaps are excluded, which reduces the number of unknowns to five 

since the β-parameter is eliminated (Table 2). The unknown model parameters were estimated in a 

similar manner as in the case of the IWCM. 

In the PD model, only the eff-parameter is unknown. It is noted that this model is a simple function 

of the TDM height. For estimating biomass, the dependence on the allometric relationship, which is 

indirect for the other models, is very clear in this case. The estimate of eff is obtained by fitting the 

model to measurements of InSAR height for the training stands (Table 2). 

3.5. Model Training and Inversion Procedure 

The 201 forest stands with a size of at least 1 ha were divided in two datasets, one for training and 

one for validation. Then the datasets were interchanged and training and validation was repeated.  
As a first-order approximation  ߪ  and  ߪ௩  in Equation (5) were estimated from the TDM 

backscatter measurements of the 20 stands with the smallest and largest biomass. Because of the large 

scatter of the measured backscatter with respect to biomass, it was assumed that a constant β = 0.007 

would return a realistic approximation of the two backscatter model parameters [41]. To correct for 
errors in the regression,  ߪ  was manually adapted such that the model curve of Equation (4) would 

have been within the range of observations. The estimates of the coherence model parameters in 

Equation (5) were then obtained. gr was determined as the mean of the TDM coherence for the ten 

stands with highest coherence and with biomass close to zero, while veg was assumed equal to gr. 

In the case of IWCM, the values of the two remaining unknown parameters  and β were estimated 

by means of least-squares fitting of the model to the observations in the training dataset using the 

Levenberg-Marquardt method together with the constraint that the area-fill (expressed by the LiDAR 

vegetation ratio) is <1. Since the TDM height was the most accurate SAR observation (Figure 3), the 

two unknown model parameters were estimated by minimizing the quadratic difference between the 

InSAR height predicted by the model (zest) and the corresponding observed TDM heights (HTDM,i): 

݉݅݊ሺݖ௦௧ሺܤ, ,ߙ ሻߚ െ ெ,ሻଶ்ܪ



 (15)

In Equation (15), Bi represents the LiDAR-based value of biomass of training stand i. A minimization 

similar to Equation (15) was also done for the coherence to determine a correction to veg. The effect of 

the fine tuning of this parameters did not have any significant effect on the estimate of zest and 

therefore on the estimation of the remaining model parameters. Once the model parameters  and  

were estimated, the model could be inverted to obtain estimates of biomass Bj for each forest stand j in 
the validation dataset by estimating the roots of the expression ݖ௦௧൫ܤ, ,ߙ ൯ߚ െ ெ,்ܪ ൌ 0. 

In the case of the RVoG model, m can sometimes be assumed negligible, but here m was included 

in the analysis since the contribution from ground is important for forest heights up to ≈15 m 

(depending on the attenuation observed in summer and in winter). The parameter  was determined by 

fitting the model to TDM height by least-squares fitting. Biomass was then estimated in the same way 

as for the IWCM. 

The simplest model, PD, is a model for the TDM height expressed by the allometric expression for 
the forest height and an attenuation coefficient for the penetration, h(B) − ߙ

ିଵ . From the training 
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stands an estimate for eff, was obtained. The biomass for the validation stands was then estimated 

from Equation (14). 

4. Modeling and Biomass Retrieval Results 

Results concerning the estimation of the model parameters are presented first (Section 4.1). Then, 

retrieval results are presented in the form of RMSE values of biomass estimation (Section 4.2). RMSE 

can be considered a measure of the usefulness of the different models as well as a measure of the 

biomass estimation accuracy. 

Figure 5. Scatter plots and model results for three TDM acquisitions, in order from top to 

bottom 2012-02-01 (HOA = 80 m), 2011-11-23 (HOA = −185 m), and 2012-08-13  

(HOA = 358 m). IWCM results for backscatter, coherence, TDM height and vegetation 

ratio (area-fill): solid line, RVoG results for coherence and TDM height: dashed line, and 

PD results for TDM height: dash-dotted line. 

 

 

4.1. Model Properties and Parameters Estimates 

Figure 5 illustrates model-based backscatter, coherence, height and area-fill (vegetation ratio) as a 

function of biomass with respect to observations from the TanDEM-X dataset and corresponding 

LiDAR-based biomass. Three examples are shown representing a winter (2012-02-01), a fall  

(2011-11-23), and a summer (2012-08-13) acquisition as well as different HOA: 80 m, −185 m and 

358 m, respectively. Backscatter and coherence presented weak sensitivity with respect to biomass. 

The backscatter was characterized by a dynamic range of 2–3 dB, with a clear decreasing trend for 

increasing biomass which can be connected with relatively rough and wet conditions of the soil. 

123



Remote Sens. 2013, 5 5587 

 

 

Coherence was mostly above 0.7 and showed a decreasing dynamic range for increasing HOA (The 

two extreme coherence values in the bottom line are associated with stands crossed by a high voltage 

power line). Compared to backscatter and coherence, the InSAR heights showed the strongest 

sensitivity to biomass. The association strength between TDM heights and biomass however decreased 

for increasing HOA. The association between vegetation ratio and biomass was also strong. Saturation 

of the vegetation ratio slightly above 100 Mg/ha could be observed. The three models could reproduce 

the trend in the observations regardless of the observable and the acquisition date (Figure 5). Some 

discrepancies occurred in the range of the highest biomass values. 

Estimates of the model parameters for each TDM acquisition are presented in Table 3 and 

illustrated in Figures 6, 7 and 8. Figure 6 illustrates the IWCM estimates of the two backscatter and the 
two coherence parameters for each acquisition. The ratio ߪ௩ ߪ/  indicates stronger sensitivity of the 

backscatter to biomass for shallow incidence angles (filled circles in Figure 6a). The backscatter ratio 

and β determine the biomass for which the backscatter from ground and vegetation are similar, and 

from this criterion as well as exp[-h(V)] ≈ 0.15 it is found that the ground has an influence up to a 

biomass of 50–100 Mg/ha and forest heights of 12–17 m. The four cases with shallow incidence angle 

of 41 were also those with |HOA|  80 m. For these cases, the coherence was relatively noisy, in 

particular on 2011-06-04, whereas the coherence parameters veg and gr were almost equal, as 

expected for cases without temporal decorrelation (crosses and filled circles in Figure 6b). Images with 

|HOA|  172 m presented instead a slight difference with veg < gr. This difference could not be 

explained as an effect of ATB length or specific environmental conditions though. 

Table 3. TDM acquisition date, model parameters , β, and modeled TDM height in m at 

150 Mg/ha (H150) for IWCM, and  for RVoG and PD. 

# Date  IWCM β IWCM H150 IWCM  RVoG eff PD 

1 2011-06-04 0.20 0.0093 15.0 0.14 0.17 

2 2011-11-23 0.12 0.0056 9.4 0.09 0.10 

3 2011-12-26 0.11 0.0053 8.9 0.08 0.10 

4 2012-01-17 0.15 0.0070 11.2 0.11 0.12 

5 2012-01-28 0.10 0.0049 8.5 0.07 0.09 

6 2012-02-01 0.15 0.0070 12.0 0.11 0.12 

7 2012-02-08 0.12 0.0056 9.2 0.09 0.10 

8 2012-02-12 0.17 0.0080 13.1 0.12 0.14 

9 2012-02-19 0.14 0.0068 10.9 0.10 0.11 

10 2012-02-23 0.16 0.0078 12.8 0.12 0.13 

11 2012-03-01 0.14 0.0066 10.4 0.10 0.11 
12 2012-03-12 0.12 0.0058 9.6 0.09 0.10 
13 2012-03-23 0.13 0.0061 9.8 0.09 0.10 
14 2012-05-28 0.16 0.0076 11.8 0.12 0.12 
15 2012-07-22 0.14 0.0068 10.8 0.10 0.11 
16 2012-08-02 0.14 0.0068 10.9 0.10 0.11 
17 2012-08-13 0.14 0.0066 10.3 0.10 0.11 
18 2012-08-24 0.14 0.0065 10.6 0.10 0.11 
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Figure 6. (a) Estimates of ߪ௩ ߪ/  (cf. Equation (5)) ( and  for incidence angles of 34° 

and 41°, respectively) and (b) estimates of gr () and veg (cf. Equation (4)) (o and  for 

|HOA|  80 m or above, respectively) versus TDM acquisition date (date order). 

 
(a) (b) 

Figure 7 illustrates the range of modeled TDM heights with respect to biomass being delimited by 

the curves corresponding to the maximum (2011-06-04) and minimum (2012-01-28) model estimated 

TDM heights. For biomass of 150 Mg/ha Table 3 lists the corresponding modeled TDM height, which 

varied between 8.5 m and 15.0 m. Such variability must be compensated for by a model-based 

approach to retrieve biomass in order to correctly interpret the dependence of TDM height on biomass. 

Figure 7. Range of model-based estimates of TDM heights versus biomass. The range is 

delimited by the curves (solid for IWCM, dashed for PD model) corresponding to the 

maximum and minimum of model estimated TDM heights versus biomass. 

 

Figure 8 illustrates the estimates of the  parameter in the case of the IWCM with respect to 

temperature and the corresponding range of the extinction coefficient eff delimited by the two curves 

for the smallest and largest estimates of eff using Equation (8). The attenuation in the vegetated 

fraction () did not present clear dependence on temperature (Figure 8), nor we could identify any 

dependence on HOA. This result is in contrast with the assumption that α should be lower in case of 

sub-zero temperatures. However, since the few acquisitions characterized by frozen environmental 

conditions took place when temperature was close to 0 °C, it is not possible to conclude that such an 
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assumption is incorrect. The increase of the extinction coefficient with biomass shown in Figure 8b 

also means an increase with area-fill (i.e., LiDAR vegetation ratio). The range 0.1–0.3 dB/m confirm 

previous estimates derived in [5,6]. 

Figure 8. (a) Estimates of  in the case of the IWCM with respect to temperature in °C  

(  for |HOA|  80 m, o for |HOA| ≈ 180 m, and + for |HOA| ≈ 330 m) and  

(b) corresponding range of the extinction coefficient with respect to biomass as delimited 

by the curves corresponding to the maximum and minimum  (acquisition dates 2011-06-04 

and 2012-01-28, respectively). 

 
(a) (b) 

4.2. Biomass Estimation 

The biomass of each stand in the validation dataset was estimated based on the trained models and 

compared with the LiDAR-based estimates of biomass. The biomass retrieval accuracy expressed in 

the form of the RMSE between the TDM biomass and the reference biomass is given in Table 4 for the 

different models. The estimates obtained with the IWCM presented slightly better accuracy compared 

to the retrieval based on the other models. Nonetheless, the difference between the models is relatively 

small, in particular between IWCM and PD. 

Table 4 indicates that winter-time data with long-lasting frozen conditions (February–March 2012, 

see also Figure 4) was more suitable for retrieval compared to other acquisitions. In Figure 9 the 

RMSEs are plotted with respect to date and to |HOA|. Figure 9b shows a clear difference depending on 

whether |HOA| was  80 m or above; in the former cases the retrieval RMSE was much lower. Since 

the TDM height is determined by the InSAR phase, and 2π corresponds to a TDM height = HOA, a 

certain phase error will have increased effect on TDM height for increasing HOA. 

The RMSE reported in Table 4 was obtained for the 201 forest stands larger than 1 ha. Taking into 

account smaller forest stands as well, resulted in larger retrieval errors as shown for the case of the 

IWCM-based retrieval in Table 5 for the two cases with lowest and highest RMSE, i.e., for the TDM 

acquisitions on 2012-02-01 (HOA = 80 m) and 2012-08-13 (HOA = 358 m) respectively. The number 

of forest stands in the validation dataset increased to 315 when using a threshold on stand size of 

0.5 ha (mean biomass of 110 Mg/ha). It further increased to 403 when the threshold was 0.25 ha (mean 

biomass of 112 Mg/ha). 
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Table 4. Single-image relative RMSE for the biomass estimated using the models IWCM, 

RVoG, and PD. 

# Date 
RMSE % 

IWCM 

RMSE % 

RVoG 

RMSE % 

PD 

1 2011-06-04 16.8 19.9 19.5 

2 2011-11-23 24.3 28.2 25.4 

3 2011-12-26 25.4 28.9 26.2 

4 2012-01-17 21.1 22.8 20.7 

5 2012-01-28 20.8 25.4 22.0 

6 2012-02-01 16.7 16.7 17.9 

7 2012-02-08 21.3 24.5 21.4 

8 2012-02-12 17.5 21.1 19.1 

9 2012-02-19 21.7 23.5 21.7 

10 2012-02-23 17.5 20.5 18.7 

11 2012-03-01 22.5 26.8 23.5 

12 2012-03-12 25.9 29.3 25.8 

13 2012-03-23 23.3 24.8 23.0 

14 2012-05-28 29.5 27.2 27.2 

15 2012-07-22 28.4 28.3 27.4 

16 2012-08-02 22.5 27.4 23.1 

17 2012-08-13 33.0 39.7 33.1 

18 2012-08-24 27.2 28.3 26.4 

 Mean RMSE 23.1 25.7 23.4 

Figure 9. (a) Illustrating relative RMSE variation with TDM acquisition date (date order) 

 for IWCM, + for RVoG, o for PD. (b) Illustrating relative RMSE IWCM versus HOA. 

 
(a) (b) 

Table 5. Relative RMSE in the case of the IWCM as a function of minimum forest stand 

size. The two acquisitions with the smallest and largest RMSE are shown for simplicity. 

Date 
RMSE % 

Stands  1 ha 

RMSE % 

Stands  0.5 ha 

RMSE % 

Stands  0.25 ha 

2012-02-01 16.7 20.2 22.6 

2012-08-13 33.0 35.2 38.3 
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It was previously observed (Figure 7) that the TDM height varied considerably between different 

acquisitions; however, for each acquisition the biomass of each stand, i, was rather constant thanks to 

the compensation embedded in the models. An important aspect of satellite observations is the 

possibility to further exploit repeated observations to reduce the uncertainties in the single-image 

estimates of the biomass [13,14,41]. A multitemporal combination of the different biomass estimates, 

l, is here proposed in which the weighting factor are based on the HOA since it has been shown above 

how the noise in the TDM height is increasing with HOA, cf. Figures 3, 5, and 9. The multitemporal 

estimate of the biomass of each stand, Bmti, is defined as 

ݐ݉ܤ ൌ
ܣܱܪ

ିଶ

∑ ܣܱܪ
ିଶଵ଼

ଵ
,ܤ

ଵ଼

ୀଵ

 (14)

The multitemporal biomass determined by IWCM resulted in a RMSE of 16.5% or 17.3 Mg/ha and 

R2 = 0.93, for stands > 1 ha (Figure 10). 

Figure 10. Scatterplot of biomass derived from a multi-temporal combination of 18 TanDEM-

X InSAR pairs with respect to LiDAR-based biomass for 201 stands larger than 1 ha. 

 

5. Discussion 

The study on above-ground dry biomass retrieval with TanDEM-X interferometry follows a number 

of investigations on remote sensing data and retrieval techniques at the Remningstorp test site. Several 

of these studies have dealt with the use of multitemporal spaceborne and airborne SAR data. 

Interferometric SAR datasets acquired at C-band with one-day temporal separation were evaluated to 

retrieve forest stem volume in [13] achieving RMSE of 27%. In [27] L- and P-band SAR backscatter 

was used for biomass estimation with RMSE between 31% and 46% for L-band and 18% and 27% for 

P-band. In [42] a biomass model for P-band with training data from Krycklan, a test site in northern 

Sweden, was used, and validation data from Remningstorp resulted in RMSE 22–33%. For 

CARABAS VHF-band SAR single image estimates from different flight directions resulted in RMSE  

11–25% [43]. However, it should be noted that RMSE is not the only way to compare different 

methods. In a first report on the use of TanDEM-X data from Remningstorp with the goal of biomass 

estimation [40], two monostatic acquisitions were studied with a delay of 3 s, which complicates the 
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analysis due to temporal decorrelation. For a 95% confidence interval four biomass classes up to  

250 Mg/ha could be distinguished. 

The RMSE obtained in the present study (16%) demonstrates the significant contribution of 

multitemporal TanDEM-X interferometric data to the quantification of forest aboveground biomass. 

Similar accuracy has earlier been found by means of other X-band satellite InSAR measurements; 

namely with SRTM [7], and TanDEM-X [44]. Since a dependence on tree species is expected [7,45],  

a knowledge about the species based on other data could improve RMSE. A shorter time difference 

between LiDAR measurements (August 2010) and TDM measurements (June 2011–August 2012) also 

could improve the RMSE, but the time difference is relatively short and the growth (approximately  

5 Mg/ha/year) has not been compensated for. A local value of BEF i.e., 0.512 was used, due to lack of 

a more general value. In the literature somewhat higher values can be seen, see e.g., [46], and when 

testing BEF = 0.58 (determined from proportions of tree species of the seven 80 m × 80 m stands and 

BEF-factors for pine, spruce and deciduous according to [27]) the RMSE values were slightly changed 

(varying from 16.4% to 31.1%) but the mean value of RMSE for IWCM was unchanged at 23.1%. 

Since BEF is used for training as well as validation stands, the effect of BEF is small. 

There is a close relationship between biomass and TDM height, which is determined by the forest 

height and the penetration depth. The latter is related to the vegetation density. The low extinction 

values, i.e., <0.3 dB/m, which can be assumed to be related to gaps in the vegetation down to different 

levels, make the X-band microwaves to propagate up to 6–10 m into the vegetation according to the 

Penetration Depth model in the studied cases. 

In the present study data the tendency to “saturate” at biomass > 200 Mg/ha in Figure 10 is 

probably not caused by the saturation effect observed in backscatter studies, since the measurement is 

based on the volume decorrelation and penetration depth of the upper vegetation layer, but may instead 

be caused by changes in the forest density, i.e., number and dimension of gaps (Figure 2). This should 

be further investigated. The deviation from the reference line below 50 Mg/ha, could be related to the 

sensitivity of TDM data to specific conditions of the ground. In particular, the measured backscatter 

showed some deviations from the model in this region (Figure 5). However, it should also be noted 

that the reference biomass was obtained from LiDAR measurements which in turn were characterized 

by their own set of uncertainties and errors. The forest height varied more than 10 m in height in the 

biomass range < 50 Mg/ha (Figure 2) indicating certain complexity of the TDM and LiDAR metrics in 

this interval of biomass. 

The number of training stands used in this study was half of the total number of stands, which in 

practical terms might be difficult to achieve when the aim is to map larger areas. With fewer training 

stands, it is assumed that the representativeness of the model parameters decreases in a manner related 

to forest homogeneity and measurement noise. To verify the impact of the number of stands used for 

model training on the retrieval, an extreme case was considered of a training dataset formed by only 

five stands chosen with approximate intervals of 50 Mg/ha. The RMSE for the best performing 

acquisition (2012-02-01) increased from 16.7% to 18.1% for stands larger than 1 ha, illustrating the 

possibility to limit the training dataset to a small number of training stands. 

So far the accuracy of biomass estimation has been analyzed using models with parameters trained 

by stands having known properties. It would be very valuable if training stands could be avoided. The 

PD model is appealing since it contains only one unknown and the retrieval RMSE was close to the 
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result obtained with the IWCM (Table 4), in spite of the model approximation developed with 

emphasis on mature stands. Figure 11a shows that the estimate of the eff parameter in the PD model 

obtained with training stands was relatively constant with one exception (see also Table 3). If eff can 

be estimated from known conditions it may be possible to give a first-order estimate of forest height 

and biomass depending on how sensitive the estimates are for the correct eff. A preliminary sensitivity 

analysis of the retrieval RMSE of biomass with respect to eff is illustrated in Figure 11b and should be 

further investigated, when a wider range of environmental conditions have been studied. 

Figure 11. (a) Estimates of eff (PD model) versus acquisition date in date order and  

(b) sensitivity of the relative RMSE using PD to eff for the two acquisitions with highest 

(dashed line, 2011-06-04) and lowest (solid line, 2012-01-28) eff-values. 

 
(a) (b) 

An analysis of two TanDEM-X acquisitions from a spruce dominated area in southeast Norway 

used a linear function [44] between biomass and TDM height without intercept, ܤ ן ்݄ெ . The 

relative RMSE at the stand level was 19% using a biomass increase of 14 Mg/ha per m increase of 

TDM height. Such a linear relation is in line with our results, cf. Figure 5. However, as shown by the 

variation of H150 (TDM height at 150 Mg/ha) there is a variation between the different acquisitions. 

Assuming a linear relation, B =  hTDM, results in  varying between 10.3 and 16.4, with a mean of 

13.3 Mg/ha per m TDM height.  

The result in [44], and the analysis of PD show the importance of extending the TanDEM-X 

analysis to a wider range of environmental conditions and to investigate if a fixed value of a single 

parameter model results in a sufficiently high accuracy over a wide range of conditions. If so, the use 

of training stands can be avoided. 

6. Conclusions 

Eighteen interferometric TanDEM-X bistatic image pairs (VV-polarization) acquired between  

June 2011 and August 2012 over the test site of Remningstorp, situated in southern Sweden, have been 

studied in order to determine the potential of model-based above-ground dry biomass estimation. 

LiDAR-based estimates of biomass and vegetation ratio, acquired in August 2010 [19], were used as 

reference data. In order to interpret the TanDEM-X observations, the Interferometric Water Cloud 
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Model (IWCM), was primarily used. The Random Volume over Ground model (RVoG), was also 

studied, and a new model based on the penetration depth (PD) concept, was introduced. All the used 

models are based on physical principles, but in a significantly simplified form. Therefore, it should be 

stressed, that the parameters represent simplifications of complex phenomena. However, the physical 

relevance makes it possible to relate the variation of the parameters to other measurements and to 

environmental influence. 

The relative RMSE of biomass associated with a retrieval based on the IWCM for forest stands ≥ 1 ha 

varied between 17% and 33% (relative to the mean value of 105 Mg/ha), with the best estimates 

obtained for small HOA. The relative RMSE for biomass retrieval based on the RVoG model varied 

between 17% and 40%. The relative RMSE for biomass retrieval based on the simple PD model was 

between 18% and 33%. Taking the mean of all 18 TDM estimates of stand biomass weighted inversely 

proportional to HOA2 resulted in an RMSE of 16% in the IWCM case for forest stands larger than 1 ha. 

The environmental influence (temperature, humidity, rain etc.) on the TDM height resulted in a 

variation from 8.9 m to 15.2 m at a biomass of 150 Mg/ha, and this variation has to be taken care of by 

the model analysis. 

The presented analysis demonstrates that TanDEM-X InSAR data together with an accurate  

high-resolution DTM, a fairly straightforward allometric expression, and forest stands for training model 

parameters, have a potential to estimate above-ground dry biomass with high accuracy in the case of 

forest conditions like those in Remningstorp. The results obtained by means of the bistatic TanDEM-X 

(VV-pol) are among the best remote sensing estimates of biomass obtained so far from Remningstorp. 

In a more general perspective, these results indicate the suitability of TanDEM-X data to retrieve 

boreal forest biomass with accuracy and spatial resolution as required by forest inventories, cf. [2]. 
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Abstract—A two-level model (TLM) is introduced and inves-
tigated for the estimation of forest height and canopy density
from a single ground-corrected InSAR complex correlation coef-
ficient. The TLM models forest as two scattering levels, namely,
ground and vegetation, separated by a distance Δh and with
area-weighted backscatter ratio μ. The model is evaluated us-
ing eight VV-polarized bistatic–interferometric TanDEM-X image
pairs acquired in the summers of 2011, 2012, and 2013 over the
managed hemi-boreal test site Remningstorp, which is situated
in southern Sweden. Ground phase is removed using a high-
resolution digital terrain model. Inverted TLM parameters for
thirty-two 0.5-ha plots of four different types (regular plots, sparse
plots, seed trees, and clear-cuts) are studied against reference lidar
data. It is concluded that the level distance Δh can be used as an
estimate of the 50th percentile forest height estimated from lidar
(for regular plots: r > 0.95 and root-mean-square difference (σ)
< 10%, or 1.8 m). Moreover, the uncorrected area fill factor
η0 = 1/(1 + μ) can be used as an estimate of the vegetation
ratio, which is a canopy density estimate defined as the fraction
of lidar returns coming from the canopy to all lidar returns
(for regular plots: r > 0.59 and σ ≈ 10%, or 0.07).

Index Terms—Canopy density, forest height, interferomet-
ric model, interferometry, synthetic aperture radar (SAR),
TanDEM-X, two-level model (TLM).

I. INTRODUCTION

THERE is a great need for a tool suitable for frequent
mapping of large forest areas. Global forest biomass is

one of the largest uncertainties in the current climate models
[1]. An efficient tool for deforestation detection is needed for
the implementation of international agreements [2]. Remote
assessment of forest quality is also needed for biodiversity
studies and commercial forestry.

Two important forest parameters are forest height and canopy
density. In airborne lidar scanning, these parameters are often
highly correlated with biomass [3]. Moreover, they can be also
used for the assessment of forest quality, as well as deforesta-
tion detection.
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Across-track interferometric synthetic aperture radar (InSAR)
is a technique in which the scattering center elevation is mea-
sured from small phase differences between two SAR acqui-
sitions made at slightly different incidence angles [4]. If a
high-resolution digital terrain model (DTM) is available, which
is the case in Sweden and many other European countries, the
phase introduced by ground topography can be removed, and
the remaining phase term is related to the scattering center
elevation above ground, which is related to forest height and
canopy density [5]. However, the inversion of these parameters
from InSAR data is not trivial.

It has been shown that forest height can be estimated from
C-, L-, and P-band fully polarimetric InSAR data using ran-
dom volume over ground (RVoG) model inversion [6]–[8]. For
single-polarized InSAR data, simplified versions of the RVoG
can also provide estimates of forest height [9]–[11]. The RVoG
models forest as a horizontally homogeneous volume, and there
is no parameter directly related to the horizontal structure.

In the interferometric water cloud model (IWCM) [12]–[14],
the horizontal structure is modeled using canopy gaps. The
IWCM has been mainly investigated for stem volume (and later
biomass) retrieval, although forest height retrieval has also been
studied [15].

The scope of this letter is to introduce a model suitable
for the estimation of both forest height and canopy density
from a single ground-corrected InSAR complex correlation
coefficient. The model is evaluated using single-pass X-band
InSAR data acquired with the TanDEM-X twin-satellite system
over a hemi-boreal forest in Sweden.

II. MODELING

The complex correlation coefficient γ̃ is the main observable
in an interferometric SAR system. For the two images s1 and
s2, it is defined as

γ̃ =
E[s1s

∗
2]√

E [|s1|2] E [|s2|2]
(1)

where E[•] is the expectation value operator, and ∗ is the
complex conjugate operator.

In the case of TanDEM-X InSAR data, the temporal decorre-
lation over forests is negligible due to the almost simultaneous
acquisition scenario [16]. Furthermore, assume that the signal-
to-noise ratio (SNR) and system decorrelation effects are small,
images s1 and s2 have been filtered to the same 2-D frequency
spectrum [17], absolute phase calibration has been applied
to remove phase offset, and complex multilooking has been
applied to reduce phase and coherence estimation errors (see

1545-598X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Comparison between the different models described in Section II.

Section III-B). In that case, the main decorrelation effect is
volume decorrelation, which can be modeled from the vertical
backscattering profile σv(z) using

γ̃ ≈ γ̃vol =

∫ ∞
−∞ σv(z)ejkzz dz∫ ∞

−∞ σv(z) dz
(2)

where z is the vertical coordinate, and kz is the vertical
wavenumber, which, for a bistatic system, is

kz = 2πB⊥/(λR sin θ) (3)

where B⊥ is the perpendicular baseline, λ is the wavelength,
R is the average range to the satellites, and θ is the average
angle of incidence.

A. Vegetation as Random Volume

A common way to solve the integrals in (2) is through the
assumption of a known vertical backscattering profile.

In the IWCM [12]–[14], vegetation is modeled as a volume
of randomly oriented scatterers located above a ground plane
and covering a certain fraction of the total area, which is called
area fill factor [see Fig. 1(a)]. The vertical backscattering profile
is then an exponential function described by an attenuation
coefficient. The total number of parameters needed for cor-
relation coefficient modeling is five: volume height, ground
height, area fill factor, attenuation coefficient, and a ground-to-
volume backscatter ratio. Note that, in its full formulation, orig-
inally developed for stem volume estimation from repeat-pass
ERS-1/2 interferometry [12], [13], the IWCM includes addi-
tional empirical functions and temporal decorrelation modeling.

In the RVoG model [6], the gaps modeled by the IWCM are
neglected [see Fig. 1(b)], which limits the number of parameters
to four. Possible further simplifications used in the past include
neglecting the ground component, assuming known ground
phase, or fixing extinction coefficient [9]–[11]. The main ad-
vantage of the RVoG is that it requires fewer parameters than the
IWCM, but the canopy gaps are not modeled. There is, thus, no
natural parameter, which can be used as an estimate for canopy
density.

B. Vegetation as Scattering Levels

A different way to solve the integral in (2) is by simplifying
it to a sum of a finite number of discrete scattering levels.

In the special case of two scattering levels, i.e., ground and
vegetation, located at z = z0 and z = z0 + Δh, with respective
backscattering coefficients σ0

gr and σ0
veg, and covering area

fractions 1 − η and η, respectively, (2) simplifies to a two-level
model (TLM) [see Fig. 1(c)], i.e.,

γ̃TLM = eiΦ0(μ + eikzΔh)/(μ + 1) (4)

Fig. 2. Interferometric height and coherence modeled with TLM.

where Φ0 = kzz0 is the ground phase, μ = ρ(1 − η)/η is
the area-weighted (ground-to-vegetation) backscatter ratio, and
ρ = σ0

gr/σ0
veg is the backscatter ratio. In the case of known Φ0,

the TLM requires only two independent parameters describing
the scene (μ and Δh) to model one ground-corrected complex
correlation coefficient, and the inversion can be carried out
without any additional data.

C. Influence of Baseline on Height and Coherence

Assuming Φ0 = 0, the interferometric height is computed
from the phase of (4) as

hTLM =
HOA
2π

⎡
⎣tan−1

⎛
⎝

sin
(
2π Δh

HOA

)

cos
(
2π Δh

HOA

)
+ μ

⎞
⎠ + πn

⎤
⎦ (5)

where n is an integer describing the phase ambiguity, and
HOA = 2π/kz is the height of ambiguity for a bistatic system
(maximal height that can be unambiguously resolved by the
interferometric system). Likewise, the coherence is computed
from the magnitude of (4) as

γTLM = |γ̃TLM| =

√
1 + μ2 + 2μ cos

(
2π Δh

HOA

)

1 + μ
. (6)

In Fig. 2(a), the ratio hTLM/Δh is plotted against HOA/Δh
for four different values of μ. Phase unwrapping has been
performed to ensure continuity and that 0 ≤ hTLM ≤ Δh is
satisfied for large HOA. The interferometric height is fairly
independent of HOA if scattering at one level is significantly
larger than at the other level (large or small μ). If μ is close to
unity, scattering at both levels becomes equally significant, and
an interference effect is observed for low HOA, i.e., when the
phase difference between the two levels is large. In the case
of dominant ground-level scattering, negative interferometric
heights are obtained. In the case of dominant vegetation-level
scattering, interferometric height exceeding Δh is observed.
In both cases, the interference effect becomes weaker for
HOA > 2Δh.

Coherence dependence on HOA is illustrated in Fig. 2(b).
Coherence is maximized when Δh is either close to HOA or
much smaller than HOA. In the first case, the phase is similar
at both levels during the integration in the numerator of (2)
due to constructive interference of two adjacent periods. In the
second case, the phase is similar because the phase of eikzz

changes very little between 0 and Δh, and eikzz is virtually

138 Paper D



SOJA et al.: ESTIMATION OF FOREST HEIGHT AND CANOPY DENSITY FROM A CORRELATION COEFFICIENT 3

TABLE I
FIELD PLOT GROUPING USED IN THIS STUDY

TABLE II
LIDAR METRICS USED AS REFERENCE IN THIS STUDY

constant, giving maximal coherence. Coherence is minimized
for Δh = HOA/2, that is, when the interference between the
two levels is perfectly destructive. Note that TLM coherence is
the same for μ and its reciprocal 1/μ.

III. EXPERIMENTAL DATA

In this letter, data acquired over the boreal test site of
Remningstorp (58◦ 28′ N, 13◦ 38′ E), which is situated in
southern Sweden, are used. Remningstorp features fairly flat
topography with ground height varying between 120 and 145 m
above sea level. The forest consists primarily of Norway spruce,
Scots pine, and different birch species. The annual growth rate
of the forest is about 10–20 cm, but it is neglected in this study
as the study period covers only three growing seasons.

A. Field Plots and Lidar Data

A set of 32 circular 40-m radius plots is available for
Remningstorp. Species-specific field data on biomass, tree
number density, and tree height have been used together with
field observations, optical SPOT-5 images, and lists with forest
management procedures to assess the state of each plot at the
time of each SAR acquisition. As a result of these procedures,
a time line for the observed changes has been established, and
four groups with significant difference in forest structure have
been created. These groups are presented in Table I.

Three lidar metrics have been extracted from maps with
10 m × 10 m pixels provided within the BioSAR 2010 cam-
paign [18]. These lidar metric are presented in Table II. As
the lidar data have been collected in August 2010, which is
before any harvesting procedures have been conducted within
the plots, the reference data are not valid for the plots with seed
trees and clear-cuts.

B. SAR and DTM Data

TanDEM-X (TDM) is a twin-satellite X-band (9.65 GHz)
SAR interferometer in which acquisitions are made almost si-
multaneously [16]. Eight bistatic–interferometric VV-polarized

TABLE III
SUMMARY FOR THE TDM DATA USED IN THIS STUDY. MEAN VALUES

FOR ALL PLOTS ARE GIVEN. BACKGROUND SHADING IS BY HOA GROUP

TDM acquisitions made at low HOA in the ascending mode are
available and used in this study (see Table III). The nominal
incidence angle is within the interval 41.2◦–41.7◦. The data
have been divided in three groups according to the approximate
HOA level: 35 m, 50 m, and 60 m (images 4 and 5, 1–3 and 6,
and 7 and 8, respectively).

As ground reference, a DTM with a 2 m × 2 m grid posting
and a mean height error lower than 0.5 m has been used [19].
Four plots are not covered by the two images from August 2011.

TDM data have been interferometrically processed according
to [17]. The raw interferograms have been flattened in radar
geometry using a linearly interpolated DTM and taking into
consideration the quasi-bistatic acquisition geometry and satel-
lite displacement between signal transmission and reception. A
5-m buffer zone has been added prior to plot-level averaging of
the ground-corrected interferograms. The total number of looks
has been estimated to 330 for image 1 (from 2011-06-04) and
430 for the remaining seven images. Absolute phase calibration
has been done using ground reference points derived from a
nonforest mask. No unwrapping has been found necessary due
to the limited height variations in the flattened interferograms.
Geocoding error and height measurement errors have been
estimated using two 5-m trihedral corner reflectors situated
within the test site. The geocoding offset has been found lower
than 2 m, and the standard height estimation error has been
found lower than 10 cm.

IV. MODEL INVERSION

For a fixed μ and Φ0 = 0, the TLM is a circle in the complex
plane, with its center in μ/(1 + μ), radius 1/(1 + μ), and
passing through unity. Area-weighted backscatter ratio μ can
be obtained from the complex correlation coefficient γ̃ as

μ =
1 − |γ̃|2

1 − 2Re[γ̃] + |γ̃|2 (7)

whereas level distance Δh can be found using (7) in (4), i.e.,

Δh=
1

kz

[
tan−1

(
2Im[γ̃](1−Re[γ̃])

2Re[γ̃](1−Re[γ̃])−(1−|γ̃|2)

)
+πn

]
(8)

where n is an integer describing the ambiguity of the inversion;
and Re[•] and Im[•] are the real and imaginary part operators,
respectively. The 2π-ambiguity can be manually resolved by
checking the most probable values in relation to the type of
studied forest. For the data used in this study, n = 0 has been
chosen in all cases.
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Fig. 3. Scatter plots for TDM observables against lidar reference. Color
coding according to plot type has been applied, with different shades for
different HOA groups.

Fig. 4. Sample fitting results for the different plot types.

If μ and ρ are known, the area fill factor is η = ρ/(ρ + μ).
Normally, the backscatter ratio ρ is not known. Assuming ρ =
1, i.e., equal ground and canopy backscattering coefficients, the
uncorrected area fill factor η0 can be obtained, i.e.,

η0 = 1/(1 + μ). (9)

V. RESULTS

TDM interferometric height and coherence are plotted
against H95 and VR, respectively, for all eight images and
all available plots in Fig. 3. Color coding has been applied
for the different plot types and color shading for different
HOA groups. A large variance of the interferometric height
and a generally lower coherence can be observed for the
sparse plots with H95 around 25 m and for plots with seed
trees. This agrees well with the TLM predictions for area-
weighted backscatter ratios μ close to unity (see Fig. 2).
Both regular plots and clear-cuts show more predictable be-
havior with stable height estimates and a higher coherence.
Note that the tallest sparse plot is also the densest of all
sparse plots, and it shows similar behavior as the regular
plots. For the regular plots, the correlation between TDM
height and H95 is high, but an underestimation of 5–10 m is
observed. Note also that a large coherence variability is intro-
duced by the differences in the interferometric baseline.

As shown in Fig. 4(a), finding Δh and μ limits to finding a
circle in the complex plane. The ratio between the circle center
position and its radius is equal to μ. The highest area-weighted
backscatter ratio μ is thus obtained for clear-cuts, and the lowest

Fig. 5. Scatter plots for inverted TLM parameters against lidar reference.
Pearson correlation coefficients r and root-mean-square differences sigma (σ),
computed separately for the different HOA groups, are shown for the unaltered
plots (both regular and sparse plots).

is obtained for the regular dense plots. In Fig. 4(b), TDM inter-
ferometric heights and TLM model curves are plotted against
HOA. It can clearly be seen that, in cases when ground- and
vegetation-level contributions are comparable, large variance of
the interferometric height is to be expected, as in the cases of
sparse pine plots and plots with seed trees.

Parameters Δh and μ inverted using (7) and (8) are plotted
against H95 and VR in Fig. 5(a) and (b), respectively, for all
plots and acquisitions. It is concluded that Δh is a biased
estimate of H95, but a better estimate of H50 (r ≥ 0.96, and
root-mean-square difference σ is around 10% of the mean H50)
[see Fig. 5(c)]. Note that there is a HOA-dependent offset
between the acquisitions. The area-weighted backscatter ratio μ
does not measure the same property as VR, which is clearly
shown in Fig. 5(b). The uncorrected area fill factor η0 is a
better estimate of VR (r ≥ 0.59 and σ around 10% of the mean
VR) [see Fig. 5(d)]. However, a significant variance can be
observed.

As observed earlier in Fig. 3(a), plots with seed trees show
low and highly variable interferometric heights. In Fig. 5, it
can be observed that a harvesting procedure in which sparse
seed trees are left does not affect forest height inversion,
while the inverted canopy density is lower. For clear-cuts,
forest height inversion produces significantly biased results
[see Fig. 5(a) and (c)].

Since phase calibration has been done using open fields,
the interferometric height for clear-cuts is close to zero, giv-
ing an almost real-valued correlation coefficient. However,
coherence is between 0.8 and 0.9, mainly due to SNR and
system decorrelation effects. TLM inversion does not provide
reliable height estimates because the TLM cannot predict a
real-valued correlation coefficient with coherence lower than
1 and low height. This is probably the main cause of the
inflated Δh estimates for clear-cuts and the HOA-dependent
offset.
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VI. DISCUSSION

The interference effect modeled by the TLM and observed in
the data for sparse plots and seed trees occurs when ground- and
vegetation-level contributions are similar in strength. Whether
this high ground-level contribution at X-band is an effect
of dielectric penetration through the scatterers or penetration
through canopy gaps has been discussed earlier, most recently
in [20], but it is still an open question. The results shown here
hint that the inclusion of canopy gaps in modeling is useful,
as the inversion provides a parameter that is related to canopy
density.

The estimation of canopy density using the uncorrected area
fill factor η0 is based on the assumption that ρ = 1. Although
this assumption appears to be valid for the studied X-band
data, the influence of wavelength on ρ is expected to be strong,
and the assumption will not hold at other frequencies. If an
estimate of the area fill factor η is available, e.g., from lidar
VR, ρ can be estimated from μ at scene or plot level and
studied against parameters such as weather, season, and ground
surface roughness. A better knowledge of ρ can then improve
estimation of canopy density from μ.

The TLM in the presented form has been developed for
VV-polarized data, and polarization dependence has not been
studied. It has been shown in [11] that a difference in the
interferometric height can be observed between HH and VV.
Therefore, TLM inversion of HH-polarized data requires a
separate study.

This study has been limited to InSAR data with low HOA
(smaller than 65 m), for which there is a large variation of
the interferometric phase between the two levels. However,
TLM inversion is expected to work at larger HOA values as
well, as long as volume decorrelation is the most significant
decorrelation effect.

VII. CONCLUSION

In this letter, a two-level model (TLM) has been introduced
and used for the estimation of forest height and canopy density
from bistatic–interferometric VV-polarized TanDEM-X (TDM)
data. With an access to the global TDM data, the presented
approach can be used on large scale in countries where national
high-resolution DTMs exist. Since the DTM is temporally
stable in most forested regions, the presented approach requires
only one DTM acquisition, and frequent mapping of forest
height and canopy density can thereafter be carried out using
a spaceborne SAR system such as TDM. The approach is
therefore suitable for cost-effective mapping and monitoring of
national forest resources. The HOA-dependent height estima-
tion bias observed primarily for open fields and clear-cuts can
be avoided through the inclusion of a coherence calibration step
during InSAR processing, in which decorrelation effects such
as SNR and system decorrelation are compensated for.
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Estimation of Forest Biomass from Two-Level

Model Inversion of Single-Pass InSAR Data
Maciej Jerzy Soja, Henrik Persson, and Lars M. H. Ulander

Abstract

A model for above-ground biomass estimation from single-pass interferometric synthetic-aperture radar data is

presented. Forest height and canopy density estimates ∆h and η0, obtained from two-level model inversion, are used

in a power function with slope K and exponents α and β. The model is compared to a linear, zero-intercept model,

scaling the interferometric height to biomass.

Eighteen bistatic, VV-polarized TanDEM-X (TDM) acquisitions made over two test sites in the summers of 2011,

2012, and 2013 are used. Remningstorp is a hemi-boreal forest in southern Sweden, with flat topography and 32

circular plots (area: 0.5 ha, biomass: 42–242 t/ha, height: 14–32 m). Krycklan is a boreal forest in northern Sweden,

720 km north-north-east from Remningstorp, with significant topography and 31 stands (area: 2.4–26.3 ha, biomass:

23–183 t/ha, height: 7–21 m). For all acquisitions, the nominal incidence angle is 41◦ and the height-of-ambiguity

is in the interval 32–63 m. High-resolution digital terrain model has been used for ground correction during InSAR

processing.

The proposed model explains 65–89% of the variance observed in the data, with a residual root-mean-square error

(RMSE) 12–19% (median: 15%). If model training and validation are carried out on different acquisitions or between

test sites, the prediction RMSE increases (12–80%, median: 30%). With α fixed and β a site-dependent constant, the

prediction RMSE is lower (12–56%, median: 17%), while the residual RMSE is similar (12–29%, median: 16%).

The linear, zero-intercept model shows similar residual and prediction performance for the Krycklan data, whereas

for the Remningstorp data and across-site retrieval, the performance is poorer.

Index Terms

above-ground biomass (AGB), forest height, canopy density, interferometric model, two-level model (TLM),

interferometric synthetic-aperture radar (InSAR), TanDEM-X

I. INTRODUCTION

Forest are important natural resources because of their economic value and their crucial role in the local and global

ecosystems [1]. Efficient and sustainable management procedures are required to maintain healthy and productive

forests.
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One of the key elements in forest management is to have reliable information for short- and long-term planning.

The above-ground dry biomass, here shortly called biomass or the AGB, is especially important for carbon cycle

studies, while other parameters such as forest height and canopy density can both aid biomass estimation and provide

additional information on the forests. However, current methods of collecting forest information are expensive, and

therefore more cost-effective methods need to be developed. Remote sensing in combination with field inventories

has the potential to meet these requirements, and provide frequent and high-resolution mapping of forest variables.

Large-scale mapping is also needed for natural disaster management, so that the damages caused by, e.g., storms,

can be minimized.

Aerial photography has traditionally been used for forest mapping [2], [3]. This technique has the advantage of

being relatively easy to implement and interpret, but it requires cloud-free acquisitions and good flying weather.

Moreover, it is less efficient on large scale and whenever frequent updates are needed. Spaceborne photography

is more efficient in terms of coverage and acquisition rate, but it has lower resolution. More advanced optical

techniques, such as photogrammetry [4], [5], can provide additional information on forests, but the even stricter

requirements on the acquired data make their use more difficult on an operational scale.

In recent years, airborne lidar scanning (ALS) has become popular. The technique uses laser pulses transmitted

downwards from an airborne platform, which are used to sample height at high vertical and horizontal resolutions

[4], [6]–[10]. Due to the high resolutions and the penetration of laser pulses through canopy gaps, ALS can provide

information on both horizontal and vertical forest structure, and many important forest parameters can be derived

from the data. ALS is today considered the most accurate remote sensing technique in forestry [10]. However, the

technique is relatively expensive, and thus inefficient for frequent and large scale mapping. Spaceborne lidar, on

the other hand, has yet unresolved resolution, coverage, and technology limitations.

Synthetic-aperture radar (SAR) is an active remote sensing technique in which radio- or microwave-frequency

pulses are used to probe the environment. Spaceborne SAR sensors can provide weather- and daylight-independent

imagery of the Earth with resolutions down to a couple of meters. Through the choice of the center frequency,

SAR systems can be optimized to fit different needs [11]. In forestry, low frequency bands, like the VHF-band

(30–300 MHz) and the lower UHF-band (300–1000 MHz, according to the IEEE standard) are more suitable for

imaging of tree trunks and ground surface, while the high frequency bands, like the X-band (8–12 GHz), are more

suitable for the imaging of tree canopies. SAR is one of the most promising tools for forest remote sensing and

many past and ongoing studies are dedicated to the retrieval of forest parameters from SAR data [12].

The TanDEM-X system consists of two, almost identical X-band SAR satellites flying in a tight tandem formation,

at a distance of a few hundred meters during the operational phase. Using the principles of interferometric SAR

(InSAR), small phase differences between the two acquired SAR images are used to measure the position of the
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scattering center [13], i.e. to create a digital elevation model (DEM). With the tight tandem formation and bistatic-

mode acquisitions of TanDEM-X, the temporal changes between the two SAR acquisitions are minimal, and the

acquired height measurements are very precise.

The acquired DEM can be corrected for ground topography if a high-resolution digital terrain model (DTM) is

available, and a map of the scattering center elevation above ground can be obtained. In Sweden, there is a national,

lidar-scanned DTM with a grid posting of 2 m× 2 m and a height accuracy better than 0.5 m [14]. Similar DTMs

exist or are being created in many other countries. Since the changes of the ground surface are very slow in most

forested regions, only one lidar scanning is required to obtain a high-resolution DTM, and after that mapping of

forest canopy can be done with the TanDEM-X system.

The exact position of the scattering center above ground in forests is related to the structure of the forest and

it depends on forest properties such as forest height and canopy density. In several studies, this relation has been

investigated. In [15], [16], random volume over ground (RVoG) model inversion has been applied to estimate forest

height from single-pass X-band InSAR data. In [17], a linear relation between biomass and the measured elevation

of the scattering center above ground has been observed. This study has been based on an approach developed

earlier for the SRTM X-SAR data [18]. In [19], biomass estimates have been obtained from ground-corrected TDM

interferograms using the inversion of the interferometric water cloud model (IWCM), which includes an allometric

relation between forest height and biomass, as well as temporal decorrelation. Both interferometric coherence and

phase, and backscatter intensity data have been used in the inversion process. In [20], a multiple regression approach

using interferometric height, coherence, and their transformed versions has been used to estimate biomass, separately

for two test sites in Sweden.

It has been shown in [21], [22] that the inversion of a two-level model (TLM) can provide estimates of forest

height and canopy density in a hemi-boreal forest in Sweden. In this study, the inverted parameters will be used to

estimate biomass. Data from two boreal test sites in Sweden, separated by 720 km, will be used. The new model

will be evaluated both for its explanatory and predictive values.

II. METHOD

In this section, the basic models used in this study will be described. First, it will be shown how biomass can

be estimated from forest height and canopy density. Next, it will be shown how forest height and canopy density

can be estimated from InSAR data. Thereafter, the results from the first two sections will be used together, and a

new model for biomass estimation from InSAR data will be presented. Finally, the evaluation method used in this

study will be described.
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Acr AstA0

Fig. 1. Geometrical visualization of a forest plot.

A. AGB from Forest Height and Canopy Density

Above-ground biomass (AGB) is defined as the total dry mass of all above-ground forest, most commonly

measured in terms of biomass density, i.e., as mass per area unit. As a large part of the AGB is confined to the stem

(around 3/4 for spruce and pine in Sweden, according to [23]), a simple geometrical argument [24], [25] suggests

that the AGB is a function of forest height, basal area, a taper factor accounting for the non-cylindrical trunk

shape, the oven-dry wood density, and an expansion factor for the conversion of stem biomass to total aboveground

biomass. After merging the last three factors into a single, forest type-dependent constant C, the AGB can be

estimated from:

ÂGB = C · h · Ast
A0

, (1)

where Ast is the total basal area for all trees, A0 is the ground area of the plot, see Figure 1, and h is the basal

area-weighted forest height.

In field inventories, the total basal area is estimated from stem diameter measurements. The measurement of

forest height is more time-consuming, and many allometric equations for biomass computation require only stem

diameter measurements [25]–[27].

In remote sensing, there are several techniques for forest height estimation, including lidar scanning [7], [28],

[29], polarimetric SAR interferometry [30]–[32], photogrammetry [4], [5], and radargrammetry [33], [34], but the

estimation of the basal area is difficult, due to canopy closure, shadowing, and too low resolution. On the other

hand, the size of tree crowns can be estimated from aerial photography [35]–[37], lidar [9], [38], [39], or SAR

interferometry [21], [22]. Since several studies show a reasonable correlation between canopy diameter and stem

diameter for many tree species [40]–[42], the total crown area Acr will in the following be used as a predictor of
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the total basal area:

ÂGB = C ′ · h · ηcr, (2)

where C ′ is a forest type-dependent constant, which is the product of C and the ratio between the total basal area

and the total canopy area, and

ηcr =
Acr
A0

(3)

is the fractional canopy coverage, which is a measure of canopy density.

The main purpose of the argument above is to show that a multiplicative model is appropriate for biomass esti-

mation from forest height and canopy density. However, this argument is based on several simplifying assumptions

regarding the shape of the trees, their intrinsic wood properties, their spatial distribution, tree parameter distribution

within a plot, etc. In reality, the dependence of the AGB on the two forest parameters is expected to be more

complicated. For instance, there will be a residual dependence of C ′ on height and basal area, which may affect

the dependence of the AGB estimate on h and ηcr in (2). Exponents α and β are therefore introduced to create an

improved model, based on the experience from field inventories [25], [26]:

ÂGB = C ′′ · hα · ηβcr, (4)

where C ′′ is a new, forest type-dependent constant.

B. Forest Height and Canopy Density from InSAR

In synthetic-aperture radar interferometry [13], the complex correlation coefficient is the main observable and it

is defined as:

γ̃ =
E [s1s

∗
2]√

E
[
|s1|2

]
E
[
|s2|2

] , (5)

where s1 and s2 are the two interferometric images, ∗ is the complex conjugate operator, and E [•] is the expectation

value operator.

Coherence is the magnitude of the complex correlation coefficient and it is a measure of similarity between two

images. The phase of the correlation coefficient carries information about the vertical distribution of the scatterers. In

applications, the complex correlation coefficient is estimated from a finite number of samples, and the interferometric
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phase is affected by noise. The total noise level will increase with decreasing number of independent samples and/or

decreasing coherence [43].

The loss of coherence (decorrelation) can be caused by up to four different effects: temporal changes in the

scene, geometric differences between the two images, thermal noise, and system imperfections [44], [45].

Volume decorrelation is a geometric effect caused by the distribution of scatterers in the vertical direction z. It

can be modeled from the vertical backscattering profile σ(z) using [46], [47]:

γ̃vol =

∫∞
−∞ σ(z)eikzzdz
∫∞
−∞ σ(z)dz

, (6)

with kz being the vertical wavenumber, which for a bistatic acquisition geometry is:

kz =
2π

HOA
=

2πB⊥
λR sin θ

, (7)

where HOA is the height-of-ambiguity, B⊥ is the perpendicular baseline, λ is the wavelength, R is the average range,

and θ is the average angle of incidence. HOA is the height corresponding to a 2π-phase shift in the interferogram,

and it is the maximal height difference, which can be unambiguously resolved by the interferometric system.

In the two-level model (TLM) [21], [22], [48], forest is modeled as two scattering levels, ground and vegetation,

at the respective elevations z0 and z0 + ∆h, and with the respective backscattering coefficients σ0
gr and σ0

veg . The

vertical backscattering profile σ(z) is therefore:

σ(z) = (1− η)σ0
grδ(z − z0) + ησ0

vegδ(z − (z0 + ∆h)), (8)

where η is the area-fill factor (the fraction of the total area covered by the vegetation level) and δ(•) is the Dirac

delta function.

Inserting (8) in (6) yields:

γ̃vol = eikzz0 · µ+ eikz∆h

µ+ 1
, (9)

where

µ = ρ · 1− η
η

(10)

is the area-weighted backscatter ratio with the ground-to-vegetation backscatter ratio ρ defined as:
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ρ =
σ0
gr

σ0
veg

. (11)

The first exponential term in the expression for the TLM in (9) introduces a phase term related to ground

topography z0. This phase term can also be observed in the measured complex correlation coefficient γ̃. If ground

topography is known, for example from an external digital terrain model (DTM), then this exponential term can be

used to compensate the complex correlation coefficient for ground topography, so that the ground-corrected complex

correlation coefficient can be obtained:

γ̃gc =
E
[
s1s
∗
2e
−ikzz0]

√
E
[
|s1|2

]
E
[
|s2|2

] . (12)

From the phase of the ground-corrected complex correlation coefficient γ̃gc, the interferometric height (scattering

center position above ground) can be obtained using:

hgc =
arg (γ̃gc) + 2πn

kz
= HOA

(
arg (γ̃gc)

2π
+ n

)
, (13)

where arg (•) is the argument operator and the integer n describes the ambiguity of the phase computation.

In the absence of decorrelation effects other than volume decorrelation, the measured ground-corrected complex

correlation coefficient γ̃gc can be modeled by the TLM expression in (9) with z0 = 0:

γ̃gc =
µ+ eikz∆h

µ+ 1
. (14)

Since this equation has two unknowns (∆h and µ) and two observables (the real and imaginary parts of γ̃gc), it

can be solved without the need for multiple acquisitions. The TLM describes a circle in the complex plane with

its center on the positive x-axis and passing through γ̃gc and 1. The solutions for µ and ∆h are:

µ =
1− γ2

gc

1− 2Re [γ̃gc] + γ2
gc

, (15)

∆h =
tan−1

[
2Im[γ̃gc](1−Re[γ̃gc])

2Re[γ̃gc](1−Re[γ̃gc])+γ2
gc−1

]
+ πn

kz
, (16)

where γgc = |γ̃gc| is the ground-corrected coherence, Re [•] and Im [•] are the real and imaginary part operators,

respectively, and n is an integer describing the ambiguity of the inversion. The lowest positive ∆h is chosen in

cases when HOA is larger than forest height.
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In [21], [22], it has been shown that ∆h estimated from VV-polarized TanDEM-X data is correlated with H95,

which is a lidar metric for forest height (see Section III-E for the definition). It has also been shown in [21], [22]

that the uncorrected area-fill factor defined as:

η0 =
1

1 + µ
=

1
2

(
1 + γ2

gc

)
− Re [γ̃gc]

1− Re [γ̃gc]
. (17)

is correlated with vegetation ratio, which is a lidar metric for canopy density (see Section III-E for a definition).

The uncorrected area-fill factor can be obtained by solving (10) for η under the assumption that ρ = 1. The validity

of this assumption has been discussed in [21], and it has been concluded that at high frequencies, such as for the

X-band data used in [21], [22], the ground- and vegetation-level scattering coefficients are similar as the wavelength

is short compared to the size of the scatterers and the orientation of the scatterers can be considered random.

As mentioned earlier, the derivation of (15), (16), and (17) is based on the assumption that the total decorrelation

is only caused by the volume effect. In the TanDEM-X system used in this study, the near-simultaneous, bistatic

acquisition scenario minimizes the temporal decorrelation [49]. Common-band filtering of both master and slave

images deals with most of the spatial decorrelation effect caused by different range and Doppler frequency bands

[50]. Therefore, the two most significant decorrelation effects other than volume decorrelation are caused by the

finite SNR and the system imperfections. In [49], the total coherence for soil and rock for VV-polarized TanDEM-

X acquisitions in mid-swath and at a 41-degree incidence angle has been modeled to approximately 0.88 for an

occurrence level of 50% and 0.82 for an occurrence level of 90%. In this study, however, all decorrelation effects

other than volume decorrelation will be neglected for practical reasons, and the validity of this assumption will be

discussed in Section V.

Due to the high resolution of TanDEM-X data and relatively large regions of interests, a large number of

independent samples can be used during the estimation of the complex correlation coefficient, and the errors in

coherence and phase estimation are negligible. An estimate of the number of looks used during the computation of

the complex correlation coefficient will be given in Section III-G.

C. Biomass Models

The following biomass model, called the TLM biomass model or shortly the TBM, is introduced:

ÂGB = K ·∆hα · ηβ0 , (18)

where K, α, and β are unknown model parameters, and ∆h and η0 are forest height and canopy density estimates

obtained from the TLM inversion using (16) and (17), respectively.
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Fig. 2. Location of the two test sites used in this study.

The TBM will be compared to a linear, zero-intercept model, which scales the ground-corrected interferometric

height to biomass:

ÂGB = D · hgc, (19)

where D is a scaling factor, which needs to be estimated from the training data. This model has been proposed in

[17]. In the following, it will be referred to as the scaling model, or simply the SM.

D. Evaluation Strategy

The models will be evaluated using multiple TanDEM-X acquisitions acquired over two, geographically separated

test sites in Sweden, during three consecutive summers and at different HOAs. The models will be tested both for

their explanatory values (that is how well they can be fitted to the data), and their predictive values (that is how

well they can predict biomass from other data). The models will thus be tested for their robustness to the change

of test site, acquisition year, and acquisition HOA. They will also be used to produce biomass maps, to see how

well the spatial structures can be reproduced.

III. DATA

A. Test Sites

Remningstorp is a hemi-boreal test site situated in southern Sweden (58◦ 28’ N, 13◦ 38’ E), see Figure 2. It is

fairly flat with ground slopes at stand level lower than 5◦ (computed from a 50 m× 50 m digital terrain model,
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DTM). The test site covers approximately 1200 ha of productive forest land, and the forest consists primarily of

Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and birch (Betula spp.). For a description

of the test site, see [51].

Krycklan is a boreal test site located in northern Sweden (64◦ 14’ N, 19◦ 46’ E), see Figure 2. Krycklan is situated

720 km north-north-east of Remningstorp. Unlike Remningstorp, Krycklan has a strongly undulating topography

with ground slopes on stand level up to 19◦ (again, computed from a 50 m× 50 m DTM). The forest is dominated

by Norway spruce and Scots pine. For a description of the test site, see [52].

B. In-Situ Data

A set of 32 circular, 40-meter radius plots is available for Remningstorp. Field inventories were conducted during

the autumn of 2010 and spring of 2011. For each plot, all trees with a diameter at breast height (dbh) higher than

5 cm were calipered and tree species were determined. Height was measured for a subset of roughly 10% of the trees.

Out of the thirty-two plots, twenty-one are spruce-dominated (more than 2/3 of biomass), five are pine-dominated,

and two are birch-dominated. Three plots consist of a mixed spruce and pine forest and one plot consists of a mixed

forest with all three tree species.

In Krycklan, a set of 31 stands of irregular shape and sizes between 2.4 and 26.3 hectares were inventoried in

the summer of 2008. Systematic grids of circular field plots (radius 10 m) were laid out in each stand. The spacing

of each grid was selected to give between 8 and 13 field plots per stand. For each field plot, all trees with a dbh

higher than 4 cm were calipered and the species were determined. Tree height and age were also measured for 1–2

randomly chosen sample trees in each field plot. Of the thirty-one stands, five are spruce-dominated, thirteen are

pine-dominated, three are mixed coniferous, and the remaining ten are mixed forest stands.

C. Biomass Estimates

For both test sites, estimates of above-ground dry biomass have been made from the in-situ data using the

Heureka system [53], which implements the allometric functions described in [23]. The allometric functions have

been derived using multiple regression analysis of data from 1286 trees (Norway spruce, Scots pine, and birch)

from 131 stands located across Sweden and described in [54], [55].

Stem volume growth has been modeled in Heureka using the radial growth functions described in [23]. Although

SAR acquisitions have been made in the summer, which is in the middle of a growth season, biomass estimates for

the end of the preceding growth season will be used throughout this study. The performance of the volume growth

model used in Heureka has been evaluated in [56] using 1711 permanent plots from the National Forest Inventory

(NFI) database. The prediction error (RMSE) for the stem volume has been found to be around 15%, and a small
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underestimation (bias) of 2% has been observed for spruce. Due to the close relation between forest volume and

above-ground dry biomass, similar errors are also expected for the AGB.

A realistic estimate of the uncertainty in the reference biomass data used in this study is 15%, primarily based on

the results presented in [56] and the errors presented in [23]. Although the sampling procedures in Remningstorp

and Krycklan include the measurement of the dbh for a large set of trees (all trees with dbh larger than 5 cm in

Remningstorp), height has only been measured for a subset of trees, and thereafter extrapolated to the other trees

using regression from the dbh. Since both the dbh and height are used for biomass estimation, the input variables

to the allometric equations are correlated, which increases the uncertainty of the aggregated estimates. A possible

bias will also occur when the models presented in [23] are used locally, on data which may deviate from the data

used for the derivation of these models. Additional uncertainties, such as in-situ measurement errors and errors

introduced during the determination of plot areas also contribute to the total error.

D. Forest Change Detection

After field measurements, several plots/stands have been altered through clearing, thinning, or clear-cutting. In

Remningstorp, the altered plots have been identified using lists of management procedures provided by the managing

company, SPOT-5 image analysis, and field visits. Three plots have been altered between the SAR acquisitions from

2011 and from 2012, and additional eight between the SAR acquisitions from 2012 and from 2013. In Krycklan,

only SPOT-5 image analysis has been used. Two stands have been altered already before the first SAR acquisition

in 2011, but no changes have been detected after that. Altered plots/stands have been disregarded in this study.

E. Lidar Data

Two lidar metrics have been extracted from 10 m× 10 m maps provided within the BioSAR 2008 and 2010

campaigns [51], [52]. The 95th-percentile forest height, called H95, has been computed as the 95th percentile of all

lidar returns above a threshold of 1 m or 10% of the maximal return within a 10 m× 10 m cell. The lidar vegetation

ratio, called VR, has been computed as the ratio between the number of returns from above that threshold to all

returns. The VR is thus a measure of canopy density.

Biomass maps with a 10 m× 10 m resolution have been derived from multiple regression analysis of different

lidar metrics and species stratification maps, see [51], [52]. In Remningstorp, 212 circular field plots with a radius

of 10 m and distributed in a systematic grid over the entire test site, have been used for model training. In Krycklan,

the previously mentioned field plots located within the 31 stands, together with additional 110 circular field plots

surveyed with the same methodology and positioned within the central part of the test site have been used for

model training. The uncertainty in the biomass maps is estimated to 20%, based on the uncertainties reported in

[51], [52]. The maps will only be used in a qualitative, side-by-side comparison.
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Note that the lidar data have not been corrected for growth. Since the lidar data are only used in qualitative

comparisons, this does not affect the quantitative results presented in this study.

F. Digital Terrain Model

As ground level reference, the national, lidar-scanned digital terrain model (DTM) acquired by the Swedish Land

Survey is used [14]. The DTM has a 2 m× 2 m grid, with a mean height error lower than 0.5 meters. Lidar scanning

has been performed from an airplane flying at an altitude between 1700 and 2300 meters. Point density on the

ground is between 0.5 and 1 point per square meter. In the southern part of the country, lidar scanning has primarily

been performed during non-vegetative periods to minimize the contribution of leaves, grass, crops, etc.

G. InSAR Data

TanDEM-X is a twin-satellite, X-band (9.65 GHz) SAR interferometer in which acquisitions are made almost

simultaneously [49]. Bistatic-interferometric, VV-polarized, stripmap-mode TanDEM-X (TDM) acquisitions made

at low HOA in the ascending mode are used in this study. The choice of the low-HOA data is motivated by the

better sensitivity to forest height [57]. A summary of the data can be found in Table I, where background color

coding by HOA has been applied. Note that the data from 2012 feature lower HOAs than the data from 2011 and

2013. The nominal angle of incidence varies between 41.2 and 41.7 degrees for Remningstorp and between 40.4

and 41.0 degrees for Krycklan. For images 1 and 9 in Table I (the first acquisitions for each test site), the scene

center resolutions provided by the DLR in the meta files are: 1.8 m in ground range and 6.6 m in azimuth. For the

rest of the images, the ground range resolution is 2.7 m and the azimuth resolution is 3.3 m.

The InSAR data have been interferometrically processed using an in-house developed algorithm based on [50]. The

raw interferograms have been ground-corrected in radar geometry using a linearly interpolated DTM and taking into

consideration the quasi-bistatic acquisition geometry and satellite displacement between transmission and reception

of the signals. A 5-meter buffer zone has been added prior to plot/stand-level averaging of the ground-corrected

interferograms. The lowest number of looks has been estimated to 320, computed as the ratio between the area of

the smallest plot/stand in the data set (excluding the buffer zone), and the ground range and azimuth resolutions

for the image with the lowest resolution. Absolute phase calibration has been done using ground reference points

derived from a non-forest mask. No unwrapping has been found necessary due to the limited height variations in

the flattened interferogram. Geocoding error and height measurement errors have been estimated using two 5-meter

trihedral corner reflectors situated within the Remningstorp site. The geocoding offset has been found lower than

2 m and the standard deviation of the measured elevation of the scattering center has been found lower than 10 cm.

For the creation of the ground-corrected coherence and height images, a 5× 5 averaging window has been used.
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TABLE I
SUMMARY FOR THE EXPERIMENTAL DATA USED IN THIS STUDY. MEAN VALUES FOR ALL PLOTS ARE GIVEN. BACKGROUND SHADING HAS

BEEN APPLIED ACCORDING TO HOA. N IS THE NUMBER OF AVAILABLE PLOTS/STANDS FOR EACH ACQUISITION.

In-situ & lidar data
InSAR data

N
Biomass [t/ha] H95 [m]

Nr Site Date B⊥ [m] HOA [m] Coherence min mean max min mean max
1

R
em

ni
ng

st
or

p

20110604 282 49 0.65 32 42 148 242 14 23 32
2 20110809 266 52 0.67 28 42 150 242 14 23 323 20110820 258 54 0.66
4 20120601 432 32 0.54 29 42 145 242 14 22 305 20120828 370 37 0.54
6 20130702 270 51 0.66

21 42 143 242 14 22 307 20130724 226 61 0.73
8 20130804 220 63 0.73
9

K
ry

ck
la

n

20110617 258 52 0.71

29 23 94 183 7 16 21

10 20110720 250 54 0.75
11 20110811 242 55 0.76
12 20110822 240 56 0.78
13 20120717 374 36 0.59
14 20120808 360 37 0.61
15 20120819 350 39 0.62
16 20130601 270 50 0.73
17 20130623 260 52 0.71
18 20130726 216 62 0.79

Color coding by HOA: 30 m 40 m 50 m 60 m

IV. RESULTS

In this section, the two models will be fitted to the experimental data, and biomass will be estimated.

The significance of each model parameter will be studied using the Student’s t-test. This test evaluates the

hypothesis that the expectation value of the normally distributed parameter estimate β̂ is β0. The t-statistic is

computed as:

t =
β̂ − β0

σ̂β
, (20)

where σ̂β is the estimated standard deviation of β̂. The Student’s t-test will here be used to test the hypothesis

that β0 = 0. For a known number of degrees of freedom, the probability p of obtaining a certain t-statistic can be

computed from the t-distribution. A low p-value means that β is a significant parameter.

The goodness-of-fit of each model will be evaluated using the coefficient of determination R2, which describes

the fraction of the total variability observed in the data that can be explained by the model:
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R2 = 1−
∑n
i=1(Yi − Ŷi)2

∑n
i=1(Yi − Y )2

, (21)

where Yi are the observed values, Ŷi are the corresponding modeled values, and Y = 1
n

∑n
i=1 Yi is the average

observed value.

The model error will be evaluated using the root-mean-square error (RMSE), which is computed as:

RMSE =

√√√√ 1

n

n∑

i=1

(Yi − Ŷi)2. (22)

The fitting of the models has been done using non-linear least squares, as implemented in the nls function

provided within the R-package [58]. Although the use of linear least squares is possible for the TBM model after

a logarithmic transform, non-linear regression has in many cases provided lower RMSE and larger R2, and it is

therefore used throughout this study.

A. Interferometric Height and Coherence

In Figure 3(a), TanDEM-X interferometric height hgc is plotted against lidar height H95, separately for each

year. A good correlation can be observed, but the interferometric height is approximately 5–10 m lower for almost

all stands.

For some Remningstorp plots with H95 just above 25 m, the interferometric height is approximately 5 m higher

for the 2012 acquisitions (with HOAs equal to 32 m and 37 m) than for the 2011 and 2013 acquisitions (with HOAs

around and above 50 m). This effect has previously been discussed in [21], where it has been concluded that it is

caused by an interference effect occurring when ground- and vegetation-level scattering is of similar strength and

when the distance between the respective scattering centers is around HOA/2. The affected plots consist of former

seed trees with new understorey vegetation. The trees are sparse, and allow for a significant penetration through

the gaps, and the understorey vegetation layer boosts the ground-level scattering.

In Figure 3(b), ground-corrected TanDEM-X coherence γgc is plotted against lidar vegetation ratio, separately

for each year. It can be observed that coherence is consistently lower for the acquisitions from 2012 than for the

other two acquisitions, due to the larger baseline, and for some plots, the coherence falls below 0.3. It is noted that

these plots are the same, sparse plots with former seed threes and rich understorey vegetation, and that this low

coherence occurs due to the aforementioned interference effect.

In Figure 3(c), TanDEM-X interferometric height is plotted against reference biomass. For Krycklan, there is a

good correlation between the interferometric height and biomass. For Remningstorp, however, there is a large height

variance, especially in the case of the data from 2012, with low HOA. It is noted that the plots with relatively
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low biomass but high interferometric height are the same sparse plots that have been discussed in the previous

paragraphs. Note that one of these plots have been altered in 2012 and additional two in 2013, as described in [21],

and they are not included in the scatter plots from 2012 and 2013.

B. TLM Inversion Products

In Figure 4(a), the level distance ∆h inverted using (16) is plotted against lidar height H95. It can be observed

that the correlation between ∆h and H95 is better than between the interferometric height and H95, but the bias is

different, as observed in [21], [22]. Note that the slope of the inverted level distance ∆h changes at low H95. The

reason for this will be discussed in Section V.

In Figure 4(b), the area-weighted backscatter ratio µ inverted using (15) is plotted in decibels against lidar

vegetation ratio. Although these two parameters measure different properties, a good correlation can be observed.

In Figure 4(c), the uncorrected area-fill factor η0 inverted using (17) is plotted against lidar vegetation ratio. The

correlation is good for most stands.

C. Parameter Estimation Results

In Table II, estimates of K, α, and β are shown for the TLM biomass model (TBM). The TBM is able to explain

between 65% and 89% of the variance observed in the data. It can be observed that α is similar for both test sites

and for most acquisitions, with most values close to one. The other exponent, β, is similar for all acquisitions made

over the same test site, but it changes between the test sites. For acquisitions made in Krycklan, it is close to one,

whereas for those made in Remningstorp, it is closer to three. The third parameter, K, shows a large variance with

values between 0.4 and 27.1.

Based on these observations, it is reasonable to let the exponents become constants. The exponent α can be

fixed to the same value for both test sites, while the exponent β must change between test sites. In Table III(a),

regression results for the TBM with α fixed to 1.25, and β fixed to 2.64 for Remningstorp and 1.16 for Krycklan

are shown. The chosen values are all average values for the estimates presented in Table II. The estimated values

of the slope constant K ′, are more stable than the estimates of K, between 6.6 and 10.2, without any significant

difference between the two test sites. Note that the lowest R2 is obtained for the image from Remningstorp with

the lowest HOA. Since the choice of the fixed parameters is based on the mean of all values, it is biased towards

acquisitions with large HOA, as they are more frequent.

In Table III(b), regression results for the scaling model (SM) are shown. It can be observed that the slope is very

stable for both Remningstorp and Krycklan, but it changes between the two sites. For Remningstorp, it is between

8.3 and 9.6, whereas for Krycklan, it is between 11.3 and 12.2. The two lowest values are obtained for the images
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(a) TDM interferometric height vs. lidar
H95

(b) TDM ground-corrected coherence vs.
lidar VR

(c) TDM height vs. reference biomass

Fig. 3. TanDEM-X interferometric height and ground-corrected coherence are plotted against reference data. Acquisition year and HOA
intervals are shown for each subplot. Note: several points may overlap. In Remningstorp, there are 88 points in 2011, 58 points in 2012, and
63 points in 2013. In Krycklan, there are 116 points in 2011 and 87 points in both 2012 and 2013.

(a) Level distance vs. lidar H95 (b) Area-weighted backscatter ratio vs.
lidar vegetation ratio

(c) Uncorrected area-fill factor vs. lidar
vegetation ratio

Fig. 4. Inverted TLM parameters are plotted against reference data. Acquisition year and HOA intervals are shown for each subplot. Note:
several points may overlap. In Remningstorp, there are 88 points in 2011, 58 points in 2012, and 63 points in 2013. In Krycklan, there are 116
points in 2011 and 87 points in both 2012 and 2013.
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over Remningstorp acquired at the lowest HOA values. For these, the coefficient of determination is -0.07 and 0.13,

and the SM is not able to explain the variance for these acquisitions.

Note that the fixed parameters chosen above as averages of the estimated parameters shown in Table II can also

be estimated from regression of all relevant data but this approach has not been chosen here. The main purpose of

this part is to show that fixed exponents provide a more stable model. The choice of exact parameter values is not

of primary interest to this study.

D. Biomass Estimation Results

Residual scatter plots for the models are shown together with two-sigma error bars in Figure 5. It can be observed

that only for the Remningstorp acquisitions from 2012, fixing of the exponents in the TBM significantly decreases

model performance, as it also can be observed by comparing the R2-values in Table II and Table III(a). The SM

performs poorer in Remningstorp than in Krycklan.

Both residual and prediction root-mean-square error (RMSE) values are shown in Table IV for the TBM, in

Table V for the TBM with fixed exponents, and in Table VI for the SM. As expected, the performance of the TBM

is poorer in across-site evaluation and for large difference in HOA in Remningstorp, primarily due to the differences

in the exponent β. It can also be observed that the TBM with fixed exponents gives a much lower and more stable

prediction RMSE without increasing the residual RMSE significantly. In the case of the SM, both residual and

prediction RMSEs are low in Krycklan, but higher in Remningstorp and across-sites.

In Figure 6, the dependence of the RMSE on the parameters K, α, and β is studied. The default values of

the parameters are: K = 7.42, α = 1.25, β = 2.64 for Remningstorp and β = 1.16 for Krycklan, and they are

marked with vertical lines. Each parameter is varied around its default value and the RMSE is computed. While

one parameter is varied, the other two are held constant at their default values. Remningstorp and Krycklan are

shown separately, and color coding according to HOA has been applied. Note the significant difference between

Remningstorp and Krycklan in model sensitivity to different parameter settings at different HOAs.

E. Biomass Mapping

In Figure 7, biomass maps obtained using the TBM and SM are shown for both Remningstorp and Krycklan,

and compared to lidar-derived biomass maps. For both test sites, the first acquisition from 2011 has been used:

nr 1 for Remningstorp and nr 9 for Krycklan), together with the respective parameters presented in Table II and

Table III(b). Note that forest management procedures may have been conducted between the acquisition of lidar

and TanDEM-X data. Note also that, in Remningstorp, regions not covered by lidar scanning have been masked

out.
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As observed earlier during the residual study, the TBM performs well both in Remningstorp and in Krycklan, if

the parameters obtained from acquisitions made at similar HOA and within the same test site are used. Although the

SM performs well in Krycklan, it can be observed that it cannot reproduce the variance of biomass in Remningstorp.

V. DISCUSSION

The TLM biomass model (TBM) is able to explain 65–89% of the variance observed in data, with a residual

RMSE of 12-19% of the mean biomass, for 18 TanDEM-X images acquired over two test sites in Sweden. In cases

when different data are used for training and validation, the model shows poorer results, with a prediction RMSE

often exceeding 30% in across-site scenarios or when the difference in HOA is large. However, the TBM can be

stabilized by fixing α and by letting β be a site-dependent constant. In that case, the prediction RMSE is below

20% for most of the acquisitions.

The TBM is here compared to a linear, zero-intercept model, which scales the interferometric height to biomass.

This scaling model (SM) has earlier been used in [17], where a stand-level residual RMSE of 19% has been

obtained for a Norwegian test site using two images, one from the ascending orbit and one from the descending

orbit, with the respective HOAs 23 m and 122 m. In [17], the scaling factor has been estimated to 14 t/ha/m, while

in this study, the same factor is between 8.3 and 9.6 for Remningstorp and between 11.3 and 12.2 for Krycklan.

A method for biomass change detection has also been proposed in [17], based on direct scaling of the change

in the interferometric height to change in biomass, without the need for a high-resolution DTM. From the results

of this study, it can be concluded that whereas Krycklan shows many similarities with the Norwegian test site,

Remningstorp appears to be significantly different. The dependence of the interferometric height on HOA and the

horizontal forest structure is especially large in Remningstorp, and the model presented in [17] does not function

well in this test site.

In [19], an approach based on the interferometric water cloud model (IWCM) and multi-temporal averaging

of stand-level biomass estimates from eighteen acquisitions made over Remningstorp at HOAs between 49 m and

358 m, in both summer and winter, gives an RMSE of 16%, whereas multi-temporal averaging of seven images

acquired at temperatures below 3◦C gives an RMSE of 14%. In the case of a single image, the RMSE is in the

interval 17–33%. Additionally, a penetration depth (PD) model is introduced in [19], which uses a height-to-biomass

allometric equation to compute biomass from the sum of the interferometric height and the penetration depth. The

PD-based approach gives RMSE values in the interval 18–33%. The penetration depth is the only parameter that

needs to be estimated (the allometric relation is assumed to be known). However, the model does not account for the

horizontal structure of the forest, which can be problematic in the case of a commercial forest, where management

activities such as thinnings and clearings affect the denseness of the forest and its biomass, but not necessarily its

height.
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In [20], an approach based on multiple regression of the interferometric height and the ground-corrected coherence,

and their transformed versions gives an RMSE of 14% for one TanDEM-X image acquired over Krycklan (nr 9 in

Table I) and 17% for one TanDEM-X image acquired over Remningstorp (nr 1 in Table I). The approach presented

in [20] is based on multiple regression of interferometric observables, and the results may not be representative,

especially considering the limited extent of the data used in the study.

A. TLM Inversion Requirements

As biomass predictors, the TBM uses two parameters obtained from the inversion of a two-level model (TLM).

The inversion of the TLM requires a high-resolution digital terrain model (DTM), and it is based on the assumption

that volume decorrelation is the dominant decorrelation effect.

In Sweden, there is a lidar DTM covering the whole country, and similar products are or will soon be available

in many other countries. Therefore, the presented approach can already be used in many places and on a large

scale, as the global TanDEM-X data used for DEM generation have been made available by the DLR for scientific

use. Since ground surface is temporally stable in most forested areas, the availability of high-resolution DTMs will

only increase with time. The exact requirements on the DTM have not been studied here, but it is possible that

a coarser DTM than can be sufficient, as exemplified in [17]. Other techniques, such as low-frequency SAR, may

also be used as ground reference.

In the presented approach, volume decorrelation has been assumed to be the dominant decorrelation effect. In the

case of the single-pass interferometric, bistatic-mode TanDEM-X data used here, the most significant decorrelation

sources other than volume effects are the thermal noise and system imperfections. These effects have been ignored

throughout this study to keep the inversion process simple.

However, it has been observed in [21] that the TLM inversion provides unrealistically high ∆h for clear-cuts,

and that the inverted level distance ∆h is affected by a HOA-dependent offset. In Figure 4(a), a change of slope has

been observed for low H95. Additionally, a HOA dependence has been observed in the estimated model parameters

α, β, and K presented in Table II, and that this dependence is stronger in Remningstorp, where the forest is taller

and the relative HOA is lower.

A probable cause for these effects is that the SNR and system decorrelation effects have not been considered

in the TLM inversion process. Since the interferometric phase has been calibrated using non-forested areas, the

complex correlation coefficient for low forest and open areas has a high, yet non-unitary real part and low imaginary

part. The TLM cannot model a complex correlation coefficient with high coherence and low phase without making

∆h close to HOA/2. This introduces a HOA-dependent offset in the estimated ∆h.

A solution for this issue can be obtained through the modeling of a real-valued system and SNR decorrelation
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term γsys, and replacing γ̃gc by γ̃gc
γsys

in (15), (16), and (17). If γsys can be estimated, e.g., from the data, then an

improvement of the TLM inversion performance can be expected.

A second probable cause for these effects is that at low HOA relative forest height, the modeling of the exact

vertical distribution of scatterers becomes more important, as the phase change with height is larger. The assumption

of two scattering levels may then become too simplistic.

Nevertheless, the issues related to HOA dependence can be avoided in practical use by a sensible choice of HOA.

Moreover, η0 can often compensate for the large ∆h, as observed for Remningstorp in Figure 7, where biomass

mapping in open fields is accurate.

B. Influence of Forest Structure

An interesting observation can be made about the estimated values for the exponent β, associated with the canopy

density estimate η0, which changes significantly between Remningstorp and Krycklan. This can be explained by

different structure of the trees in Remningstorp and in Krycklan. It can be estimated using the Heureka system,

that 68% of the total biomass in the 32 plots in Remningstorp is confined to the stem, while for the 31 stands

in Krycklan, the same number is 76%. In [59], it is concluded that the trees in northern Sweden generally have

smaller crowns than in southern Sweden. A larger β in Remningstorp will reduce the contribution of the canopy

density estimate η0 to the total biomass, thus compensating for the fact that the forest in Remningstorp has in

general denser canopies, at similar biomass and height.

The TLM can be used to study temporal change of canopy density from multi-temporal, single-pass InSAR

acquisitions. By keeping ∆h constant for all acquisitions and letting η0 vary, an over-determined equation system

is obtained. A time series study of η0 can provide information on the change of the canopy density, due to seasonal

variations, management procedures such as clearing, thinning, and clear-cutting, or natural disasters, and, eventually,

biomass change can be estimated as well.

C. Future Development

There is an ongoing debate about the mechanisms of microwave penetration into forest canopy, and whether the

significant penetration of X-band SAR into the canopy is primarily due to the dielectric penetration through the

scatterers or penetration through the canopy gaps [60]. In this study, it is shown that the inclusion of canopy gaps in

an interferometric model can be beneficial for model inversion, but the dielectric penetration has been disregarded,

and further discussion on the penetration mechanisms is left for future studies.

The presented approach has been evaluated on VV-polarized, X-band SAR data. An evaluation of this approach

on other frequencies, for instance C-band, as well as other polarizations is of large interest. The presented approach

is principally not restricted to the used frequency, although the TLM inversion process may need to be revisited at
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other frequencies, where a different choice of ρ may be motivated. Also, as shown in [16], the difference between

the interferometric height at HH- and VV-polarization can be several meters. Although the exact relation between

the inverted parameters ∆h and η0 and the lidar estimates of forest height and canopy density, and biomass will

most likely be different at other polarizations and frequencies, the presented approach may still be useful.

This study has been restricted to data acquired at a 41-degree nominal angle of incidence. The influence of the

incidence angle requires a separate study. An evaluation of the presented approach on tropical forest is also of

interest. As the tropical forest is, in general, taller and denser, the penetration through canopy gaps is expected to

be lower, which certainly will affect TLM inversion.

VI. CONCLUSIONS

A new biomass model is proposed, in which biomass is estimated from forest height and canopy density estimates

obtained from the inversion of a two-level model (TLM) using single-pass interferometric SAR data. In this study,

bistatic-mode, VV-polarized TanDEM-X data acquired at a 41-degree nominal incidence angle over two Swedish

test sites separated by 720 km are used together with the national, digital terrain model (DTM) with a grid posting

of 2 m× 2 m and a vertical accuracy better than 0.5 m. Compared to other studies, the presented approach provides

similar or better results in terms of biomass retrieval, a larger data set has been used for the evaluation, and

across-site and across-acquisition biomass retrieval scenarios have been studied.

It is here concluded that the two test sites used in this study feature quite different forest, and regional training

of the new model is required in operational use. However, only one of the three model parameters has been found

significantly dependent on the test site, and the regional model training can be done using only a few data points,

e.g., from the National Forest Inventory database. The HOA dependence most likely caused primarily by the lack

of system and SNR decorrelation modeling can be suppressed either by choosing HOAs larger than approximately

twice the forest height, which is the case for most of the global TanDEM-X acquisitions over boreal forests, or by

the modeling of a real-valued system and SNR decorrelation term.

Since a high-resolution digital terrain model is required for TLM inversion, the presented approach is suitable for

frequent mapping of large areas of forest in regions with known topography. However, the ground surface is most

often temporally stable, and only one DTM acquisition is required. Thereafter, forest height, canopy density, and

biomass mapping can be done using spaceborne SAR with large coverage, high resolution, and frequent acquisitions.

Therefore, the presented approach is useful for the monitoring of national forest resources, and for improved forest

management. With an access to the global TanDEM-X data, national maps of forest height, canopy density, and

biomass can be created.
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[3] J. Hyyppä, H. Hyyppä, M. Inkinen, M. Engdahl, S. Linko, and Y.-H. Zhu, “Accuracy comparison of various remote sensing data sources

in the retrieval of forest stand attributes,” Forest Ecology and Management, vol. 128, no. 1–2, pp. 109–120, 2000.

[4] B. St-Onge, Y. Hu, and C. Vega, “Mapping the height and above-ground biomass of a mixed forest using lidar and stereo Ikonos images,”

International Journal of Remote Sensing, vol. 29, pp. 1277–1294, 2008.

[5] H. Persson, J. Wallerman, H. Olsson, and J. E. Fransson, “Estimating forest biomass and height using optical stereo satellite data and

a DTM from laser scanning data,” Canadian Journal of Remote Sensing, vol. 39, no. 03, pp. 251–262, 2013. [Online]. Available:

http://pubs.casi.ca/doi/abs/10.5589/m13-032

[6] M. Nilsson, “Estimation of tree heights and stand volume using an airborne lidar system,” Remote Sensing of Environment, vol. 56, pp.

1–7, 1996.
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Nelson, H. Ogawa, H. Puig, B. Rièra, and T. Yamakur, “Tree allometry and improved estimation of carbon stocks and balance in tropical

forest,” Oecologia, vol. 145, pp. 87–99, 2005.

[26] S. Brown, A. J. R. Gillespie, and A. E. Lugo, “Biomass estimation methods for tropical forests with applications to forest inventory data,”

Forest Science, vol. 35, pp. 881–902, 1989.
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TABLE II
RESULTS FOR THE TLM BIOMASS MODEL (TBM). FOR EACH PARAMETER, THE ESTIMATED STANDARD DEVIATIONS σ, t-STATISTICS, AND

p-VALUES ARE SHOWN. FOR THE WHOLE MODEL, THE COEFFICIENTS OF DETERMINATION R2 ARE SHOWN.

TBM: ÂGB = K∆hαηβ0
Nr Site K σ t p α σ t p β σ t p R2

1

R
em

ni
ng

st
or

p

9.4 4.87 1.9 6.4e-02 1.2 0.18 6.7 2.6e-07 2.7 0.37 7.3 4.5e-08 0.78
2 11.6 6.49 1.8 8.6e-02 1.1 0.19 6.0 3.3e-06 3.0 0.39 7.6 5.5e-08 0.81
3 27.1 15.39 1.8 9.1e-02 0.9 0.19 4.6 9.6e-05 3.0 0.38 7.9 3.0e-08 0.82
4 0.4 0.37 1.0 3.5e-01 2.4 0.39 6.0 2.2e-06 1.8 0.34 5.3 1.4e-05 0.65
5 1.7 1.13 1.5 1.5e-01 1.8 0.24 7.3 9.2e-08 2.0 0.30 6.5 7.4e-07 0.76
6 7.4 5.63 1.3 2.0e-01 1.2 0.25 4.8 1.3e-04 2.6 0.44 5.8 1.8e-05 0.81
7 6.5 3.71 1.7 9.8e-02 1.3 0.19 6.8 2.4e-06 2.9 0.36 8.0 2.4e-07 0.89
8 20.1 15.34 1.3 2.1e-01 0.9 0.25 3.8 1.2e-03 3.2 0.55 5.8 1.7e-05 0.81
9

K
ry

ck
la

n

15.0 11.34 1.3 2.0e-01 1.0 0.25 3.9 5.7e-04 1.4 0.26 5.5 9.4e-06 0.85
10 9.6 6.76 1.4 1.7e-01 1.1 0.23 4.8 5.8e-05 1.3 0.28 4.5 1.3e-04 0.84
11 13.7 9.25 1.5 1.5e-01 1.0 0.22 4.6 1.1e-04 1.4 0.27 5.2 2.2e-05 0.86
12 8.5 5.09 1.7 1.1e-01 1.2 0.21 5.7 5.8e-06 1.2 0.24 5.0 3.3e-05 0.87
13 3.9 2.37 1.6 1.2e-01 1.5 0.21 6.9 2.4e-07 0.9 0.34 2.6 1.6e-02 0.82
14 4.6 2.96 1.5 1.3e-01 1.4 0.22 6.4 8.3e-07 0.9 0.35 2.6 1.5e-02 0.82
15 6.7 4.53 1.5 1.5e-01 1.3 0.22 5.7 4.9e-06 1.2 0.38 3.0 5.4e-03 0.82
16 8.9 6.47 1.4 1.8e-01 1.1 0.24 4.8 5.4e-05 1.1 0.35 3.1 4.8e-03 0.81
17 20.5 16.41 1.2 2.2e-01 0.9 0.26 3.4 2.1e-03 1.4 0.28 4.9 4.9e-05 0.84
18 8.8 6.21 1.4 1.7e-01 1.1 0.24 4.8 5.5e-05 1.0 0.26 4.0 5.0e-04 0.83

Color coding for acquisition number by HOA: 30 m 40 m 50 m 60 m
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TABLE III
RESULTS FOR THE TLM BIOMASS MODEL (TBM) WITH FIXED EXPONENTS AND THE SCALING MODEL (SM). FOR EACH SLOPE

PARAMETER, THE ESTIMATED STANDARD DEVIATIONS σ, t-STATISTICS, AND p-VALUES ARE SHOWN. THE COEFFICIENTS OF
DETERMINATION R2 ARE ALSO SHOWN.

(a) TBM with fixed exponents: ÂGBRe = K′∆h1.25η2.640 ,
ÂGBKr = K′∆h1.25η1.160

Nr Site K ′ σ t p R2

1

R
em

ni
ng

st
or

p

7.6 0.20 37.2 2.7e-27 0.78
2 7.5 0.21 35.5 3.4e-24 0.80
3 8.0 0.23 34.2 9.1e-24 0.79
4 10.2 0.55 18.5 3.0e-17 0.22
5 8.8 0.32 27.8 5.9e-22 0.64
6 7.1 0.23 30.3 3.4e-18 0.81
7 7.1 0.18 39.3 2.1e-20 0.88
8 7.2 0.25 28.5 1.1e-17 0.78
9

K
ry

ck
la

n

6.7 0.19 36.3 4.4e-25 0.84
10 6.6 0.18 36.1 5.1e-25 0.84
11 6.8 0.18 37.4 1.9e-25 0.85
12 6.7 0.17 39.5 4.1e-26 0.87
13 7.5 0.22 34.0 2.6e-24 0.81
14 7.4 0.22 34.4 1.8e-24 0.81
15 7.3 0.21 35.2 9.8e-25 0.82
16 7.0 0.20 34.9 1.2e-24 0.81
17 7.2 0.19 37.7 1.5e-25 0.83
18 6.8 0.19 35.9 5.7e-25 0.82

(b) SM: ÂGB = Dhgc

Nr Site D σ t p R2

1
R

em
ni

ng
st

or
p

9.0 0.40 22.2 1.4e-20 0.40
2 9.1 0.45 20.2 7.8e-18 0.41
3 9.4 0.44 21.2 2.3e-18 0.46
4 8.3 0.53 15.6 2.4e-15 -0.07
5 8.4 0.49 17.4 1.5e-16 0.13
6 9.4 0.48 19.3 2.1e-14 0.54
7 9.6 0.45 21.6 2.5e-15 0.63
8 9.6 0.50 19.4 1.9e-14 0.54
9

K
ry

ck
la

n

11.5 0.31 36.6 3.6e-25 0.85
10 11.4 0.32 36.0 5.3e-25 0.84
11 11.7 0.31 37.6 1.6e-25 0.85
12 11.6 0.29 39.4 4.7e-26 0.87
13 11.3 0.32 35.4 8.7e-25 0.82
14 11.4 0.32 35.1 1.1e-24 0.82
15 11.4 0.32 35.5 8.2e-25 0.83
16 11.8 0.34 35.2 9.8e-25 0.81
17 12.2 0.32 38.3 9.8e-26 0.84
18 11.9 0.32 36.6 3.3e-25 0.83

Color coding for acquisition number by HOA: 30 m 40 m 50 m 60 m
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(a) TBM: ÂGB = K∆hαηβ0 (b) TBM with fixed exponents:
ÂGBRe = K′∆h1.25η2.640 ,
ÂGBKr = K′∆h1.25η1.160

(c) SM: ÂGB = Dhgc

Fig. 5. Residual scatter plots are shown. Acquisition year and HOA intervals are shown for each subplot. Horizontal error bars show the
15%-uncertainty of the reference biomass estimates. Vertical error bars represent the residual RMSE values presented on the diagonal of Tables
IV–VI. Note: several points may overlap. In Remningstorp, there are 88 points in 2011, 58 points in 2012, and 63 points in 2013. In Krycklan,
there are 116 points in 2011 and 87 points in both 2012 and 2013.
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TABLE IV
RESIDUAL AND PREDICTION RMSE VALUES (IN PERCENT OF THE AVERAGE BIOMASS, WHICH CAN BE FOUND IN TABLE I) FOR THE TBM.

RESIDUAL RMSE VALUES ARE MARKED IN BOLDFACE CHARACTERS AND SHOWN ON THE DIAGONAL. OFF-DIAGONAL, PREDICTION
RMSE VALUES ARE SHOWN.

TBM: ÂGB = K∆hαηβ0 (K, α, and β as in Table II)
Training Validation data

data 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Nr Site Remningstorp Krycklan
1

R
em

ni
ng

st
or

p

16 15 16 39 25 17 14 17 46 43 45 41 48 47 46 43 50 44
2 16 15 16 41 26 17 14 16 48 45 48 43 50 49 48 45 52 46
3 18 17 15 38 25 23 21 20 41 37 40 35 41 40 39 37 45 39
4 68 72 68 19 33 73 77 80 29 29 31 30 39 38 37 33 33 30
5 29 31 29 27 16 32 33 36 35 33 36 33 43 42 41 36 39 34
6 17 16 19 41 27 15 12 17 48 45 48 44 51 50 49 46 52 46
7 17 17 20 44 30 16 12 16 53 50 53 49 55 55 54 51 56 51
8 17 16 19 44 30 17 14 15 51 47 50 45 51 51 49 47 55 48
9

K
ry

ck
la

n

32 33 29 24 23 33 34 35 15 16 15 15 19 18 17 16 16 16
10 31 32 29 23 21 31 32 33 15 16 15 14 20 19 18 17 17 16
11 32 33 30 24 23 34 34 35 15 16 15 15 19 18 17 16 16 16
12 32 33 31 23 22 32 33 35 15 16 15 14 19 19 18 16 16 15
13 53 55 52 26 35 52 55 56 23 23 21 20 16 16 16 18 18 21
14 50 51 49 25 33 49 51 52 22 22 20 19 16 16 16 17 17 20
15 46 47 45 24 30 47 49 50 19 20 18 18 16 16 16 17 15 18
16 35 36 34 23 24 35 36 37 16 17 16 15 18 17 17 16 15 16
17 36 37 33 26 27 38 38 39 17 19 16 18 18 18 17 17 14 17
18 31 32 30 23 22 31 32 33 16 16 15 14 19 18 18 16 16 15

Main color coding by RMSE value: 20% 40% 60% 80%
Color coding for the acquisition number by HOA: 30 m 40 m 50 m 60 m
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TABLE V
RESIDUAL AND PREDICTION RMSE VALUES (IN PERCENT OF THE AVERAGE BIOMASS, WHICH CAN BE FOUND IN TABLE I) FOR THE TBM

WITH FIXED EXPONENTS. RESIDUAL RMSE VALUES ARE MARKED IN BOLDFACE CHARACTERS AND SHOWN ON THE DIAGONAL.
OFF-DIAGONAL, PREDICTION RMSE VALUES ARE SHOWN.

TBM with fixed exponents: ÂGBRe = K ′∆h1.25η2.64
0 , ÂGBKr = K ′∆h1.25η1.16

0 (K ′ as in Table III(a))
Training Validation data

data 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Nr Site Remningstorp Krycklan
1

R
em

ni
ng

st
or

p

16 15 17 39 24 17 14 17 21 22 19 20 17 16 16 18 16 20
2 16 15 17 39 25 17 14 17 20 21 19 19 16 16 16 18 16 19
3 17 16 16 36 22 20 18 20 25 27 24 24 18 18 18 21 19 24
4 40 40 33 29 26 48 48 47 57 60 56 57 42 43 44 51 47 56
5 23 23 19 32 20 29 28 29 36 38 35 36 25 26 26 31 28 35
6 17 16 19 42 28 15 12 16 17 17 16 16 17 17 16 16 15 16
7 17 17 20 42 28 15 12 17 17 17 16 15 17 17 16 16 15 16
8 16 16 19 42 27 15 12 16 17 18 16 16 17 16 16 16 15 17
9

K
ry

ck
la

n

19 19 23 45 31 17 13 18 15 16 15 14 19 19 18 17 16 16
10 20 20 24 46 32 17 14 18 16 16 15 14 20 20 19 17 17 16
11 19 18 22 45 31 16 13 17 16 16 15 14 19 18 18 16 16 16
12 19 19 23 45 31 17 13 18 15 16 15 14 19 19 18 17 16 16
13 16 15 17 40 25 16 13 17 19 20 18 18 16 16 16 17 15 19
14 16 15 18 40 26 16 13 17 19 20 18 18 16 16 16 17 15 18
15 16 16 18 41 26 16 13 17 18 19 17 17 17 16 16 17 15 18
16 17 17 20 43 29 16 12 17 16 17 15 15 18 17 17 16 15 16
17 16 16 19 42 27 15 12 16 17 18 16 16 17 17 16 16 15 17
18 19 19 22 45 31 16 13 18 16 16 15 14 19 19 18 16 16 16

Main color coding by RMSE value: 20% 40% 60% 80%
Color coding for the acquisition number by HOA: 30 m 40 m 50 m 60 m
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TABLE VI
RESIDUAL AND PREDICTION RMSE VALUES (IN PERCENT OF THE AVERAGE BIOMASS, WHICH CAN BE FOUND IN TABLE I) FOR THE SM.

RESIDUAL RMSE VALUES ARE MARKED IN BOLDFACE CHARACTERS AND SHOWN ON THE DIAGONAL. OFF-DIAGONAL, PREDICTION
RMSE VALUES ARE SHOWN.

SM: ÂGB = Dhgc (D′ as in Table III(b))
Training Validation data

data 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Nr Site Remningstorp Krycklan
1

R
em

ni
ng

st
or

p

26 26 26 35 31 24 23 25 28 27 29 28 27 28 28 30 32 30
2 26 26 25 35 32 24 22 24 26 26 28 27 26 26 27 29 30 29
3 26 27 25 36 33 24 22 24 24 24 25 25 24 24 24 27 28 27
4 27 28 28 34 31 27 26 28 33 33 34 34 32 33 33 35 37 35
5 26 27 27 34 31 26 25 27 32 31 33 32 31 32 32 34 36 34
6 26 26 25 36 32 24 22 24 25 24 26 25 24 25 25 27 29 27
7 27 27 25 37 34 24 21 24 23 23 24 23 22 23 23 25 27 25
8 27 27 25 37 34 24 21 24 23 22 24 23 22 23 23 25 27 25
9

K
ry

ck
la

n

38 37 34 51 47 33 29 31 15 16 15 14 16 16 16 16 16 16
10 37 36 33 50 46 33 29 30 15 16 15 14 16 16 16 16 16 16
11 40 39 35 53 49 35 31 32 16 16 15 14 16 16 16 16 15 15
12 39 38 35 52 48 34 30 32 15 16 15 14 16 16 16 16 15 15
13 37 36 32 49 46 32 28 30 15 16 15 15 16 16 16 17 17 16
14 38 37 33 50 47 33 29 30 15 16 15 14 16 16 16 16 16 16
15 38 37 33 51 47 33 29 31 15 16 15 14 16 16 16 16 16 16
16 42 40 36 54 51 36 32 34 16 16 15 14 17 16 16 16 15 15
17 45 43 39 58 54 40 35 36 17 18 16 15 18 18 17 16 15 15
18 42 41 37 55 51 37 33 34 16 16 15 15 17 17 16 16 15 15

Main color coding by RMSE value: 20% 40% 60% 80%
Color coding for the acquisition number by HOA: 30 m 40 m 50 m 60 m
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(a) Sensitivity to K (b) Sensitivity to α (c) Sensitivity to β

Color coding by HOA: 30 m 40 m 50 m 60 m

Fig. 6. Sensitivity of the TBM to small changes of parameters K, α, and β around a default setup with α = 1.25, β = 2.64 for Remningstorp,
β = 1.16 for Krycklan, and K = 7.42 (being the mean of all K′-values in Table III(a)). The vertical lines show the default values and the
green, horizontal lines mark the 20% error level.
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(a) Lidar, 29 August 2010 (b) TBM, 4 June 2011 (c) SM, 4 June 2011

(d) Lidar, 5-6 August 2008 (e) TBM, 17 June 2011 (f) SM, 17 June 2011

Color coding by biomass in t/ha:
N/A 0 25 50 75 100 125 150 175 200 225 250 275 300

Fig. 7. Mapping results for (a)–(c) Remningstorp and (d)–(f) Krycklan. The lidar biomass maps are compared to biomass maps obtained
using the TLM biomass model (TBM) and the scaling model (SM) with single TanDEM-X image pairs from the corresponding dates. Model
parameters estimated using the corresponding plot/stand-level estimates data are used. Note, that growth has not been modeled in the lidar maps.

July 11, 2014 DRAFT

178 Paper E


