BACKSCATTER SIGNATURES OF WIND-THROWN FOREST IN SATELLITE SAR IMAGES

Leif E. B. Eriksson¹, Johan E. S. Fransson², Maciej J. Soja¹ and Maurizio Santoro³

¹ Chalmers University of Technology, Dept. of Earth and Space Sciences, Gothenburg, Sweden
² Swedish University of Agricultural Sciences, Dept. of Forest Resource Management, Umeå, Sweden
³ Gamma Remote Sensing, Gümligen, Switzerland

ABSTRACT

Two field experiments have been conducted in Sweden to allow an evaluation of the backscatter signatures of wind-thrown forest from L-band, C-band and X-band Synthetic Aperture Radar. When the trees are felled the backscattered signal from TerraSAR-X (X-band) increase with about 1.5 dB, while for ALOS PALSAR (L-band) a decrease with the same amount is observed. Radar images with fine spatial resolution also show shadowing effects that should be possible to use for identification of storm felled forest.

Index Terms— Synthetic Aperture Radar, forestry, wind-throw, storm damage, clear-cut

1. INTRODUCTION

In 2005 and 2007 devastating storms hit Sweden (among other countries) causing large damages to forested areas. In these two storms, it was estimated that about 70 million cubic meters (2005) and about 12 million cubic meters (2007) of timber fell down to a value of billions of Euro. At occasions like these, rapid mapping of wind-thrown forests is crucial in order to salvage timber values and prevent insect outbursts that could kill the remaining standing trees. After a severe storm it is also of high importance to get a fast overview to assess the roads that should be cleared from wind-thrown trees as well as to detect power lines that are broken.

The simulation of wind-thrown forest was done by manual felling of trees in two directions to simulate two possible main wind directions during a storm. In both 2006 and 2009 four coniferous stands, each with a size of about 1.0 to 1.2 ha, were felled and the trees were left for a few orbit repeat cycles to ensure image acquisitions after the “storm”. The felled trees were then harvested and removed and the areas could be used for analysis of signatures from clear-cuts. The locations of the test areas and reference areas during the two campaigns are shown in Fig. 1. ALOS PALSAR data were acquired according to JAXA’s global observation strategy for ALOS, i.e. at 34.3° look angle in ascending passes with Fine Beam Single (FBS) polarization (HH) mode during the winter and Fine Beam Dual (FBS) polarization (HH + HV) mode during the summer and autumn. Radarsat-2 and TerraSAR-X were programmed to acquire data at different look angles and in both ascending and descending passes to study differences in the shadowing effects. From each satellite about 20 images have been analyzed.
3. RESULTS

The results from 2006 show that, compared to selected reference forest stands, the backscatter intensity from the ALOS PALSAR FBS HH polarized images decreases about 1.5 dB when the trees are felled (Fig. 2). The same decrease is observed for HH-polarized ALOS PALSAR FBD images in 2009 (Fig. 3). TerraSAR-X HH-polarized backscatter show a significant increase when the trees were felled and the difference to selected reference forest stands is about 1.5 dB (Fig. 4). The corresponding differences for Radarsat-2 are 0.2 dB to 1.2 dB for HH-polarization. Shadowing effects in fine resolution TerraSAR-X data show a potential for detection of wind-throw with separation to the reference forest backscatter of around 8 dB (Figs. 5 and 6). These figures also indicate that the variation in incidence angle that is given by different orbit tracks only have a marginal effect on the backscatter values. The deviation from the trend that can be observed during the clear-cut phase for track 2 in Fig. 4 is most likely due to rain fall. In general, the temporal effects caused by precipitation seem to have a higher influence on the backscatter values than the difference in incidence angles. Similar results are seen for the high-resolution data from Radarsat-2. More results, including also HV-polarized data from Radarsat-2 and ALOS PALSAR, are presented in [4].

4. DISCUSSION AND CONCLUSIONS

The experiments indicate that it should be possible to detect wind-thrown forest with high-resolution spaceborne SAR. When trees are felled, the changes in backscatter level for areas without shadowing effects are small and several images might be required to increase the reliability of the detections. The backscatter changes are stronger for areas where new shadows occur (or disappear) after a storm, but a
spatial resolution finer than about 10 m is required. After a real storm the shadowing effects will in many cases be more diffuse than from the rectangular areas that were used in the experiments that are presented in this paper, which will increase the requirements on the resolution. It should also be pointed out that when a tree is felled by strong wind it is either uprooted or the stem breaks. The uprooted root system is often several meters in diameter and cause additional roughness and scattering surfaces that has not been possible to simulate in the experiment described in this paper. This difference between the conducted experiment and real conditions is expected to have a larger effect on the backscatter for longer wavelengths and might introduce double bounce scattering if the trees are felled in the same direction as the look direction of the SAR.

5. ACKNOWLEDGMENT

This work was financially supported by the Swedish National Space Board and the Hildur and Sven Wingquist’s Foundation for Forest Research. ALOS PALSAR data have been provided by JAXA EORC within the framework of the JAXA Kyoto & Carbon Initiative. Data from Radarsat-2 were granted within the Canadian program for Science and Operational Applications Research for Radarsat-2 (SOAR), project number 3931 and data from TerraSAR-X were provided by the German Aerospace Center (DLR) under the agreement for proposal LAN0126. Meteorological observations from Remningstorp were available through a license agreement with SMHI. A. Pantze is acknowledged for his contribution to the planning of the storm simulation in 2009.

6. REFERENCES


Figure 5. Difference in TerraSAR-X backscatter values (HH) between treated test areas and reference stands. Only areas with shadow or layover are considered. Includes images from both ascending and descending satellite passes. Each point represents an average of all data collected during each treatment phase.

Figure 6. Difference in TerraSAR-X backscatter values (HH) between treated test areas and reference stands. Only areas with shadow or layover are considered. Includes images from both ascending and descending satellite passes. Each point represents an average of all data collected during each treatment phase.